- 1 Comparison of hemodynamics and root configurations between remodeling and reimplantation methods
- 2 for valve-sparing aortic root replacement: A pulsatile flow study

Abstract

6	Purpose: To compare the characteristics of reimplantation (RI) using grafts with sinuses and remodeling (RM)
7	with/without external suture annuloplasty by using a pulsatile flow simulator.
8	Methods: Porcine aortic roots were obtained from an abattoir and six models of RM and RI with sinuses were
9	prepared. External suture annuloplasty (ESA) was performed in the RM models to decrease the root diameter to
10	22 mm (RM-AP22) and 18 mm (RM-AP18). Valve models were tested at mean pulsatile flow and aortic
11	pressure of 5.0 L/min and 120/80 (100) mmHg, respectively, at 70 beats/min. Forward-flow, regurgitation,
12	leakage, backflow rates, valve-closing time, and mean and peak pressure gradient (p-PG) were evaluated. Root
13	configurations were examined using micro-computed tomography (micro-CT).
14	Results: The backflow rate was larger in the RM models than in the RI models (RI: 8.56%±0.38% vs. RM:
15	12.64%±0.79%; p<0.01). The RM-AP and RI models were comparable in terms of forward-flow, regurgitation,
16	backflow rates, p-PG, and valve-closing time. Micro-CT analysis showed larger dilatation of the sinus of the
17	Valsalva in the RM groups (Valsalva: RI, 26.55±0.40 mm vs. RM-AP22, 31.22±0.55 mm [p<0.05]; RM-AP18,
18	31.05±0.85 mm [p<0.05]).
19	Conclusions: RM with ESA and RI with neo-sinuses provided comparable hemodynamics. ESA to RM reduced
20	regurgitation.

22 Introduction

23	Aortic root remodeling (RM) and aortic valve reimplantation (RI), the two major procedures for valve-sparing
24	root replacement (VSRR), have evolved to show excellent clinical results. The favorable long-term durability of
25	VSRR without the need for life-long anticoagulation therapy has contributed to a better quality of life in young
26	patients. Nevertheless, the optimal procedure for VSRR remains controversial [1]. RM is considered
27	advantageous because of its physiological hemodynamics and reduced aortic valve systolic energy loss [
28	2]. On the other hand, RI is favored for its annulus stability and is chosen especially for patients with
29	annuloaortic ectasia or Marfan syndrome [3-5]. However, the use of the tube graft eliminates the mobility of the
30	sinuses of Valsalva in the RI technique, which leads to rapid and unphysiological valve behavior [6]. Recent
31	reports have shown that RI using a graft with sinuses provides better valve behavior due to preservation of the
32	distensibility of the neo-Valsalva sinus [7]. With regard to RM, concomitant annuloplasty procedures have been
33	reported to preserve the physiological hemodynamics of the valve and annulus stability [3, 8, 9]. However, the
34	valve behaviors in RM with annuloplasty and RI using grafts with sinuses have never been compared in detail.
35	Thus, the objective of this study was to evaluate and compare the hemodynamics and root configurations of the
36	two modern VSRR techniques in a pulsatile flow simulator to gain insights into the influence of VSRR
37	techniques in clinical practice.
38	

40 Methods

41 Preparation of valves

- 42 We prepared six RM and RI models using porcine aortic valves. Fresh porcine hearts were obtained from a
- 43 local abattoir and stored frozen. The hearts were defrosted on the day of the experiment. The aortic root,
- 44 including the left ventricular outflow tract (LVOT), was excised. After visual inspection, porcine hearts with
- 45 undamaged tricuspid aortic valves were used. As a control model, the ascending aorta was cut down and sewn
- 46 into the remaining muscle of the LVOT by using 4-0 or 5-0 synthetic polypropylene sutures to connect the valve
- 47 models to the pulsatile flow simulator, as shown in Figure 1. Coronary ostias were ligated using 2-0 silk sutures.
- 48 Two models were then prepared for each RM and RI technique (n = 6 each).
- 49 The graft size is decided by the body surface area (BSA) and the normal estimated ventriculo-aortic junction
- 50 (VAJ) of the patient in clinical practice. As Capps et al.[10] mentioned the correlation between the VAJ and
- 51 BSA, the appropriate diameter of the VAJ is set to be around 20-22mm. The ratio between VAJ and sino-
- 52 tubular junction in the normal subject has been reported as 1:1.1 to 1:1.2 [11]. Therefore, 24mm tube graft with
- the 20-22mm annuloplasty in the RM models and 24-26mm Valsalva graft with the RI seemed to be a decent
- 54 choice in this study. Considering the VAJ of the control group (23.88mm for the RM and 23.67mm for the RI),
- to set the VAJ to 22mm seemed mild and the targeted VAJ of 20mm was decided to be appropriate in this
- 56 experimental study. Although the majority of the appropriate graft for the RI in clinical practice would be

57	26mm, considering the use of the porcine hearts (smaller BSA than humans) and the targeted VAJ of 20mm, we
58	chose the smaller graft of 24mm. To clarify the effect of the annuloplasty procedure, we set the diameter 4mm
59	apart in the RM groups with the same graft size.
60	For the RM group, a J-graft SHIELD NEO® (Japan Lifeline, Tokyo, Japan) 24-mm tube graft was used. We
61	left at least 5 mm of the aortic wall remnant to include the graft inside the root to secure the anastomosis. The
62	commissure height of the graft was not fixed to a certain value but was tailored to an appropriate commissure
63	height for each porcine model. RM was performed using continuous 5-0 synthetic polypropylene sutures with 3-
64	mm intervals for the native side and 5-mm intervals for the graft to create the bulge of the Valsalva. The RM
65	group underwent external suture annuloplasty (ESA) to decrease the diameter of the VAJ to 22 mm (RM-AP22)
66	or 18 mm (RM-AP18). ESA was performed with the method described by Schneider et al. [8] using expanded
67	polytetrafluoroethylene (e-PTFE: Gore-Tex CV-0; W. L. Gore, Flagstaff, Arizona). ESA was performed at the
68	level of the basal ring under intravascular visual guidance. Right/non-commissure suturing was not performed to
69	avoid the membranous septum interference. The suture was tied down after insertion of 22- or 18-mm Hegar
70	dilators (MA Corporation, Chiba, Japan, distributed by JP Creed Corporation, Tokyo, Japan) into the aortic
71	annulus.
72	For the RI model, considering the effects of the sinus of Valsalva on physiological valve motion [6, 7, 12, 13],
73	Dacron grafts with neo-sinuses were handmade by combining the horizontal and vertical creases of the grafts.

74	The direction of the groove at the collar and straight portion is horizontal whereas at the sinus of Valsalva is
75	vertical. The handmade neo-sinus Valsalva graft was crafted based on the proportion of the Gelweave TM
76	Valsalva (Terumo Vascutek, Tokyo, Japan). A J-graft SHIELD NEO® with a 24-mm diameter was used for
77	this purpose. In reference to the product information and observation of the actual item, three rectangle grafts
78	were crafted for the recreation of the sinuses. The rectangle grafts were combined to leave about 10 vertical
79	creases in width and 24mm in length for each sinuses. This vertical groove area served as the neo-sinus of
80	Valsalva. The horizontal area was left on the proximal side of the graft as a collar with the length of three
81	creases (basal ring). First-row suturing was performed with pledgeted 2-0 braided polyester sutures in a
82	horizontal mattress fashion at the basal ring. A total of 6 stitches (3 below the commissure and 3 in the nadir)
83	were applied. Second-row suturing was performed with continuous 5-0 polypropylene sutures using the
84	standard method [14]. Commissures were fixed to the border of the Valsalva graft. Fibrin glue (Beri-plast® P;
85	CSL Behring, Marburg, Germany) was used to avoid leakage from the suture line in all models.
86	
87	Experimental procedure
88	For the remodeling experiments, the RM models $(n = 6)$ were initially prepared. After testing the

89 hydrodynamic performance of the RM model, ESA was applied to the RM model to prepare the RM-AP22

90	model. After testing the hydrodynamic performance of the RM-AP22 model, RM-AP18 models were
91	sequentially prepared and tested. The RI models were independently prepared $(n = 6)$ and tested.
92	
93	Pulsatile flow study
94	The influences of the VSRR techniques on valve behaviors were investigated using a pulsatile flow simulator
95	(Figure 2a and 2b). Using a porcine aortic valve before conducting any VSRR procedures (control model), the
96	mean pulsatile flow rate and aortic pressure were regulated to 5 L/min and 120/80 (100) mmHg, respectively.
97	The heart rate was set at 70 beats/min. Then, the RM, RM-AP22, RM-AP18, and RI models were tested.
98	Flow was measured using an ultrasonic flow sensor (ME-PXN ME19PXN325; Transonic, NY, USA). Left
99	ventricular and aortic pressures were measured using pressure transducers (UK-801; Baxter, CA, USA). The
100	mean forward-flow, regurgitation, leakage, backflow rates, mean pressure gradient (m-PG), and peak pressure
101	gradient (p-PG) were compared among the VSRR models. The mean forward-flow rate was measured as the
102	antegrade left ventricular flow rate toward the aortic valves (Figure 3a). Regurgitation and leakage rates were
103	determined by evaluating retrograde flows during and after closure of the aortic valves (Figure 3a). The
104	backflow rate was calculated based on the following formula: backflow rate (%) = ((Regurgitation + Leakage) /
105	Mean forward-flow rate) \times 100. The pressure gradient (PG) of the aortic valve was calculated as the pressure
106	difference between the left ventricular and aortic pressure (Figure 3b). p-PG was the largest value, whereas m-

107	PG was defined as $\frac{1}{T}\int \Delta P dt$ (T = valve opening time). The valve-closing time was assessed using a high-speed
108	camera at a capture speed of 1000 fps (Keyence Co. Ltd., Osaka, Japan). After each pulsatile flow test, the
109	three-dimensional conduit morphology of each model was analyzed using micro-computed tomography (micro-
110	CT) (Yamato Scientific Co. Ltd., Tokyo, Japan) with a resolution of $91.5 \times 91.5 \times 91.5 \mu m^3$. An air pressure of
111	80 mmHg was applied to the lumen at the aortic side of the models to simulate the pressure conditions during
11 2	valve closure (Figure 4). The perimeters of the sinotubular junction (STJ), sinus of Valsalva (Valsalva), and
113	VAJ were measured, and the diameters were calculated.
114	
115	Statistical analysis
116	The Shapiro–Wilk test was used to test the normality of continuous variables. Depending on whether the
117	distribution was normal, one way analysis of variance or Kruskal-Wallis test was used to compare the means of
118	the four groups. When there was a significant difference, Tukey HSD test or Dunn test was used to evaluate the
119	difference in the means of each group as a post hoc analysis. Data are expressed as mean ± standard error. The
120	Statistical Package for Social Science (SPSS) version 28 (IBM Corp., Armonk, NY, USA) was used for the
121	analysis. Statistical significance was set at $p < 0.05$.
122	
123	Results

124 Hemodynamic parameters

125 Comparisons among remodeling groups

- 126 Regurgitation, leakage, and backflow rates were lower in RM models with ESA (regurgitation: RM, 0.48 ± 0.04
- 127 L/min vs. RM-AP18, 0.31 ± 0.05 L/min [p < 0.05] and RM-AP22, 0.41 ± 0.07 L/min [p = 0.50]; leakage: RM,
- 128 0.28 ± 0.02 L/min vs. RM-AP18, 0.17 ± 0.02 L/min [p < 0.01] and RM-AP22, 0.23 ± 0.02 L/min [p = 0.18];
- 129 backflow: RM, 12.64% \pm 0.79% vs. RM-AP18, 8.54% \pm 0.89% [p < 0.01] and RM-AP22, 11.01% \pm 0.43% [p =
- 130 0.33]) (Figure 5a, 5b, and 5c). The forward-flow rate was also lower in RM models with ESAs (RM: 6.05 ± 0.08
- 131 L/min vs. RM-AP18: 5.53 ± 0.11 L/min [p < 0.01] and RM-AP22: 5.82 ± 0.09 L/min [p = 0.30]) (Figure 5d).
- 132 RM-AP18 showed a significantly greater PG than RM and RM-AP22 (p-PG: RM-AP18, 14.5 ± 1.3 mmHg vs.
- 133 RM, 5.1 ± 1.3 mmHg [p < 0.01] and RM-AP22, 9.0 ± 0.5 mmHg [p < 0.01]; m-PG: RM-AP18, 9.5 ± 1.2 mmHg
- 134 vs. RM, 3.2 ± 0.8 mmHg [p < 0.01] and RM-AP22, 5.4 ± 0.4 mmHg [p < 0.01]) (Figure 6).
- 135 Comparisons of RM and RI models
- 136 In comparison with the RI model, the regurgitation rate was larger in the RM model, and leakage rate was
- 137 significantly larger in the RM and RM-AP22 models (Figure 5a and 5b) (regurgitation: RI, 0.34 ± 0.02 L/min
- 138 vs. RM, 0.48 ± 0.04 L/min [p < 0.05]; leakage: RI, 0.14 ± 0.01 L/min vs. RM, 0.28 ± 0.02 L/min [p < 0.01] and
- 139 RM-AP22, 0.23 ± 0.01 L/min [p < 0.01]). The backflow rate of the RM model was the largest and differed
- 140 significantly from that of the RI model (backflow rate: RI, $8.56\% \pm 0.38\%$ vs. RM, $12.64\% \pm 0.79\%$ [p < 0.01])

141	(Figure 5c). ESA in the RM model reduced regurgitation and the backflow rate to levels comparable to those in
142	the RI model. The forward-flow rate in the RM model was larger than that in the RI model (RM, 6.05 ± 0.08
143	L/min vs. RI, 5.57 ± 0.08 L/min [p < 0.01]); the forward-flow rate in the RM-AP22 was numerically larger than
144	that in the RI but did not show a significant difference (RI, 5.57 ± 0.08 L/min vs. RM-AP22, 5.82 ± 0.09 L/min;
145	$p = 0.24$); and the forward-flow rate of the RI and RM-AP18 models were comparable (RM-AP18, 5.53 \pm 0.11
146	L/min [p = 0.99]) (Figure 5d).
147	The RI and RM-AP22 models showed comparable p-PG and m-PG values. In comparison with the RI model,
148	the RM model showed a significantly lower p-PG value and the RM-AP18 model showed a significantly higher
149	m-PG value (p-PG: RI, 11.2 ± 0.6 mmHg vs. RM, 5.1 ± 1.3 mmHg [p < 0.01]; m-PG: RI, 6.2 ± 0.5 mmHg vs.
150	RM-AP18, 9.5 ± 1.2 mmHg [p < 0.05]) (Figure 6).
151	The comparisons of hemodynamic parameters between the two control groups were shown in Supplementary
152	Table 1.
153	
154	Valve motion: Leaflet-closing times
155	No significant differences were observed in the leaflet closing time among the RM models with/without ESA
156	and the RI models (Figure 7).
157	
	10

158 Root configuration

159	In the RM groups, the diameter of the VAJ in RM-AP18 was significantly smaller (VAJ diameter: RM, 23.55 \pm
160	0.79 mm vs. RM-AP18, 18.60 \pm 0.61 mm [p < 0.01]; Figure 8). No significant difference was observed in the
161	diameters of the Valsalva and STJ in the RM group. The diameter of the VAJ in the RM model was larger than
162	that in the RI model (VAJ: RM, 23.55 ± 0.79 mm vs. RI, 20.32 ± 0.86 mm [p < 0.05]; Figure 8). These data
163	implied lower annulus stability of the RM alone. The Valsalva diameter of the RI model was significantly
164	smaller than those of the RM models regardless of the addition of the ESA (Valsalva diameter: RI, 26.79 ± 0.39
165	mm vs. RM, 31.90 \pm 0.77 mm [p < 0.01]; RM-AP22, 31.70 \pm 0.53 mm [p < 0.05]; and RM-AP18, 31.42 \pm 0.90
166	mm $[p < 0.05]$). The diameter of STJ in the RI model was also significantly smaller than those in the RM
167	models (STJ diameter: RI, 26.35 \pm 0.46 mm vs. RM, 30.73 \pm 0.60 mm [p < 0.05]; RM-AP22, 30.71 \pm 0.86 mm
168	[p < 0.05]; and RM-AP18, 31.48 \pm 0.72 mm [p < 0.01]) (Figure 8).
169	The comparisons of the root configuration between the two control groups were shown in Supplementary
170	Table 1.
171	In this study, the Valsalva/VAJ ratios were 135.82 \pm 0.03% for RM, 149.48 \pm 0.37% for RM-AP22, 170.13 \pm
172	0.83% for RM-AP18, and 132.86 \pm 0.05% for RI. The STJ/VAJ ratios were 130.85 \pm 0.03% for RM, 144.50 \pm
173	0.02% for RM-AP22, 169.70 \pm 0.08% for RM-AP18, and 130.52 \pm 0.04% for RI (Figure 9).
174	
	11

176 Discussion

177

178	in RM alone was larger than those in RI. The addition of ESA to RM was effective to control regurgitation and
179	backflow rate comparable to those in RI. The findings suggest that RM with ESA with an adequate diameter and
180	RI with neo-sinuses are comparable in terms of hemodynamics.
181	In this study, the hydrodynamic performances of the two modern VSRR techniques were quantitatively
182	compared using a pulsatile circulation system. RM with annuloplasty and RI with neo-sinuses are considered
183	similar in terms of structural features. Both techniques share the concept of reconstructing the sinus of Valsalva
184	and aortic annulus stabilization. Recreation of the sinuses results in nearly normal aortic root behavior [6, 12].
185	Annulus stability is considered mandatory for avoiding recurrent aortic regurgitation (AR) [15].
186	In our pulsatile flow study, the RM valve without ESA showed less regurgitation control and annulus stability
187	than the RI valve with sinuses. These findings are consistent with those reported by Maselli and Marom [16,
188	17]. Maselli reported effective height and coaptation height reduction with the RM technique in comparison
189	with RI in the same aortic root [16]. Marom also reported that an increased aortic annular dimension was
190	associated with effective height and coaptation height reduction [17]. Our micro-CT analysis revealed that the
191	VAJ dimension was larger for RM than for RI, which was assumed to be associated with effective height

This experimental study using a pulsatile flow simulator revealed that regurgitation, leakage, and backflow rates

- 192 reduction and the resultant increase in regurgitant flow in RM than in RI. Annulus instability was obvious for
- 193 the RM technique without any annuloplasty procedures.
- 194 Previous reports have indicated that the presence of the sinus of Valsalva decreases the stress acting on the
- valve leaflets, provides an effective orifice area, reduces the PG, and induces physiological and smooth valve
- 196 motion [6, 12, 13, 18]. The ideal root configuration has been reported to correspond to a Valsalva/VAJ × 100
- 197 ratio of approximately 140%-150% and STJ/VAJ \times 100 ratio of 110%-120% to remain within the physiological
- 198 range [19, 20]. In this study, RI showed the least expansion of the sinus of Valsalva, whereas RM-AP18 showed
- 199 excessive expansion of the sinus of Valsalva and STJ relative to the VAJ diameter. In combination with the PG
- 200 data, the findings suggested that ESA with a diameter of 18 mm to the 24-mm tube graft induced excessive
- 201 tapering towards the annulus. We were surprised to see that a straight tube graft expanded more than the
- 202 Valsalva graft with neo sinuses. The bulge of the Valsalva is created in the RM whereas RI mainly depends on
- 203 the graft itself. In addition, we assume that the preserved interleaflet triangles in the RM led to a larger Valsalva
- diameter. The STJ/VAJ ratio increased beyond the ideal percentage for all VSRR models (ranging between
- 205 130.52%-169.70%). In addition, STJ expanded significantly in the RM models compared to the RI. Thus,
- 206 restriction of the STJ diameter may be required in addition to annular reduction especially in the RM groups
- when choosing a tube graft to achieve an ideal STJ/VAJ ratio. However, the correlation between STJ/VAJ and

208 valve configuration is another issue to be discussed. The necessity of STJ restriction could not be affirmed

through our study alone.

- 210 Our study showed no differences in the valve-closing time. The presence of sinuses in all VSRR models may
- 211 have contributed to a similar valve motion between the RM and RI models. The valve-moving velocity could
- 212 have differed if the total cusp-moving distance changed after the annuloplasty procedure. However, because of
- 213 the limited visibility caused by the presence of VSRR grafts, the total cusp moving distance could not be
- 214 measured in this study.
- 215 Current clinical data suggest that careful patient selection and preservation of normal cusp geometry are
- essential for the success of VSRR. Our study indicates that RM with annuloplasty and RI with neo-sinuses are
- 217 comparable in terms of hemodynamics, presenting no superiority over the other.
- 218 This study had several limitations. First, there are anatomical differences between the porcine and human aortic
- 219 roots, especially in the basal ring and VAJ. Muscle protrusion into the LVOT under the right coronary sinus is
- 220 not frequently observed in the human anatomy. These anatomical differences could have affected the
- annuloplasty procedure and root structure. Second, we used a normal porcine aortic root without aortic annulus
- dilation. In addition, configurations of the cusps (such as effective height) could not be evaluated due to poor
- visibility through echocardiography. Thus, factors for durability and recurrent AR could not be evaluated. Third,
- 224 ligation of the coronary ostia may have affected the valve motion. Fourth, grafts with sinuses used in the RI

225	model were handcrafted because of limited availability. Thus, the geometries and dilation of the RI model could
226	differ from those using a commercially available product. Nevertheless, the experimental methodology
227	presented here would be useful to investigate the optimal VSRR.
228	
229	In conclusion, our experiments quantitatively elucidated that RM alone was not sufficient to control regurgitant
230	flow in comparison with RI. The addition of ESA to RM contributed to the reduction of regurgitation. However,
231	an extensive reduction in diameter increased the transvalvular PG. The valve-closing time was comparable
232	between the RM and RI techniques. Micro-CT analysis revealed a larger dilation of the sinus of Valsalva in the
233	RM groups. RM with ESA with an adequate diameter and RI with neo-sinuses were considered comparable in
234	terms of hemodynamics.
235	

237 Acknowledgments and Funding

238	This research was supported in part by a Grant-in-Aid for Scientific Research (C) No. 15K10227, from the
239	Japan Society for the Promotion of Science, and by AMED under Grant Number JP21mk0101179.
240	
241	Conflict of Interest Disclosure Statement
242	The authors have no conflicts of interest to declare.
243	
244	

245 References

246	1. Arabkhani B, Mookhoek A, Di Centa I, Lansac E, Bekkers JA, De Lind Van Wijngaarden R, et al.
247	Reported outcome after valve-sparing aortic root replacement for aortic root aneurysm: A systematic review and
248	meta-analysis. Ann Thorac Surg. 2015; 100:1126–31.
249	2. Graeter TP, Fries R, Aicher D, Reul H, Schmitz C, Schäfers HJ. In-vitro comparison of aortic valve
250	hemodynamics between aortic root remodeling and aortic valve reimplantation. J Heart Valve Dis. 2006;
251	15:329–35.
252	3. Hanke T, Charitos EI, Stierle U, Robinson D, Gorski A, Sievers HH, et al. Factors associated with the
253	development of aortic valve regurgitation over time after two different techniques of valve-sparing aortic root
254	surgery. J Thorac Cardiovasc Surg. 2009; 137:314–9.
255	4. Ninomiya M, Takamoto S, Kotsuka Y, Miyairi T, Morota T, Kubota H. Midterm results after aortic
256	valve-sparing operation. Jpn J Thorac Cardiovasc Surg. 2001; 49:706–10.
257	5. Erasmi AW, Sievers HH, Bechtel JF, Hanke T, Stierle U, Misfeld M. Remodeling or reimplantation
258	for valve-sparing aortic root surgery? Ann Thorac Surg. 2007; 83:S752-6; discussion S85-90.
259	6. Leyh RG, Schmidtke C, Sievers HH, Yacoub MH. Opening and closing characteristics of the aortic
260	valve after different types of valve-preserving surgery. Circulation. 1999; 100:2153-60.

261	7. Matsumori M, Tanaka H, Kawanishi Y, Onishi T, Nakagiri K, Yamashita T, et al. Comparison of
262	distensibility of the aortic root and cusp motion after aortic root replacement with two reimplantation
263	techniques: valsalva graft versus tube graft. Interact Cardiovasc Thorac Surg. 2007; 6:177-81.
264	8. Schneider U, Aicher D, Miura Y, Schäfers HJ. Suture annuloplasty in aortic valve repair. Ann Thorac
265	Surg. 2016; 101:783–5.
266	9. de Kerchove L, Mastrobuoni S, Boodhwani M, Astarci P, Rubay J, Poncelet A, et al. The role of
267	annular dimension and annuloplasty in tricuspid aortic valve repair. Eur J Cardiothorac Surg. 2016; 49:428–37;
268	discussion 37–8
269	10. Capps SB, Elkins RC, Fronk DM. Body surface area as a predictor of aortic and pulmonary valve
270	diameter. J Thorac Cardiovasc Surg. 2000 May;119(5):975-82.
271	11. Izawa Y, Mori S, Tretter JT, Quintessenza JA, Toh H, Toba T, Watanabe Y, Kono AK, Okada K,
272	Hirata KI. Normative Aortic Valvar Measurements in Adults Using Cardiac Computed Tomography - A
273	Potential Guide to Further Sophisticate Aortic Valve-Sparing Surgery. Circ J. 2021 Jun 25;85(7):1059-1067.
274	12. Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS. Re-creation of sinuses is important for
275	sparing the aortic valve: a finite element study. J Thorac Cardiovasc Surg. 2000; 119:753-63.

- 276 13. Salica A, Pisani G, Morbiducci U, Scaffa R, Massai D, Audenino A, et al. The combined role of
- sinuses of valsalva and flow pulsatility improves energy loss of the aortic valve. Eur J Cardiothorac Surg. 2016;
- **278** 49:1222–7.
- 279 14. David TE, Feindel CM. An aortic valve-sparing operation for patients with aortic incompetence and
- aneurysm of the ascending aorta. J Thorac Cardiovasc Surg. 1992; 103:617–21; discussion 22.
- 281 15. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Mechanisms of aortic valve incompetence:
- finite element modeling of aortic root dilatation. Ann Thorac Surg. 2000; 69:1851–7.
- 283 16. Maselli D, Weltert L, Scaffa R, Nardella S, Guerrieri Wolf L, De Paulis R. Differences in aortic cusp
- 284 coaptation between the reimplantation and the remodeling techniques of aortic valve-sparing surgery: an in vitro
- porcine model study. J Thorac Cardiovasc Surg. 2014; 147:615–8.
- 286 17. Marom G, Haj-Ali R, Rosenfeld M, Schäfers HJ, Raanani E. Aortic root numeric model: annulus
- 287 diameter prediction of effective height and coaptation in post-aortic valve repair. J Thorac Cardiovasc Surg.
- **288** 2013; 145:406–11.e1.
- 289 18. De Paulis R, De Matteis GM, Nardi P, Scaffa R, Buratta MM, Chiariello L. Opening and closing
- 290 characteristics of the aortic valve after valve-sparing procedures using a new aortic root conduit. Ann Thorac
- **291** Surg. 2001; 72:487–94.

- **292** 19. Zhu D, Zhao Q. Dynamic normal aortic root diameters: implications for aortic root reconstruction.
- **293** Ann Thorac Surg. 2011; 91:485–9.
- 294 20. Kazui T, Izumoto H, Yoshioka K, Kawazoe K. Dynamic morphologic changes in the normal aortic
- annulus during systole and diastole. J Heart Valve Dis. 2006; 15:617–21.

297	Figure Legends
-----	----------------

- **298** Fig. 1 Preparation of the valves
- 299 The remodeling and reimplantation models were prepared using porcine aortic roots. A 24-mm Dacron graft
- 300 was used in both models. Grafts with sinuses were handcrafted in the reimplantation model. External suture
- 301 annuloplasty was used as a remodeling technique to reduce the annulus to 22 mm or 18 mm
- 302
- **303** Fig. 2 Pulsatile flow simulator
- a) Schematic of the pulsatile flow circuit
- b) An overall view of the pulsatile flow circuit

- **307** Fig. 3 Flow and pressure waveforms
- **308** a) Schematic of pulsatile flow waveforms. Forward-flow, regurgitation, and leakage were measured.
- b) Pressure waveform. Diagonal lines represent the pressure gradient between the ventricle and aorta. *T =
- 310 valve opening time

- 312 Fig. 4 Analysis of the three-dimensional morphological structure of the valves by using micro-CT
- 313

314	Fig. 5 Comparison of hemodynamics
315	(a) Regurgitation flow, (b) leakage flow, (c) backflow, (d) forward flow
316	*P < 0.05; ** P < 0.01
317	
318	Fig. 6 Comparison of pressure gradients during valve opening
319	(a) Peak pressure gradient, (b) mean pressure gradient
320	*P < 0.05; **P < 0.01
321	
322	Fig. 7 Comparison of valve closing time
323	Valve closing time assessed with a high-speed camera
324	*P < 0.05; **P < 0.01
325	
326	Fig. 8 Comparison of aortic root configurations
327	The diameters were calculated from the cross-sectional perimeters of three areas
328	(a) VAJ diameter; (b) sinus of Valsalva diameter; (c) STJ diameter
329	*P < 0.05; **P < 0.01

- 331 Fig. 9 Valsalva/VAJ and STJ/VAJ ratio
- **332** Each ratio was calculated from the data examined using micro-CT
- **333** (a) Valsalva/VAJ ratio; (b) STJ/VAJ ratio
- $\textbf{334} \qquad \ \ *P < 0.05; \ \ **P < 0.01$

- 336 Supplementary Table 1 Comparisons of hemodynamic parameters and the root configuration between the two
- 337 control groups