Variables for accuracy	CUSVe	CUSVs	LiVmea	LiVmax	Actual volume
PVR≤ 50ml (n=147)					
Measured value	10 ± 13	11 ± 14	23 ± 31	36 ± 34	21 ±15
EV	-11 ± 13	-10 ± 13	2 ± 32	16 ± 32	
%EV	-50 ± 64	-46 ± 72	48 ± 198	169 ± 340	
AEV	13 ± 10	13 ± 10	18 ± 26	23 ± 27	
A%EVR	72 ± 38	72 ± 43	111 ± 171	196 ± 324	
50 <pvr≤100ml (n="48)</td"><td></td><td></td><td></td><td></td><td></td></pvr≤100ml>					
Measured value	42 ± 29	43 ± 30	61 ± 60	87 ± 70	69 ±13
EV	-27 ± 29	-26 ± 30	-8 ± 56	18 ± 67	
%EV	-39 ± 41	-37 ± 43	-14 ± 74	24 ± 89	
AEV	32 ± 24	31 ± 23	46 ± 32	50 ± 47	
A%EVR	47 ± 0.32	45 ± 0.32	65 ± 36	69 ± 61	
PVR>100ml (n=29)					
Measured value	175 ± 129	178 ± 127	157 ± 82	200 ± 104	226 ±122
EV	-47 ± 35	-43 ± 36	-68 ± 94	-25 ± 96	
%EV	-24 ± 18	-21 ± 16	-25 ± 34	-5 ± 45	
AEV	50 ± 29	47 ± 29	78 ± 85	79 ± 58	
A%EVR	26 ± 15	23 ± 13	32 ± 27	38 ± 23	

Table 1: The actual and measured values using CUS and Lilium200- α and their erros relative to the actual values

Data were expressed as mean \pm SD

EV: error volume, AEV: absolute value of EV, A%EV: absolute value of %EV

CUSVe, CUSVs: Volume measured by conventional US and calculated by ellipsoid formula or spherical formula

LiVmax, LiVmea: Maximum or mean volume measured by the Lilium200- α

Pairwise comparisons were performed between the two methods of measurement at each PVR range

by the Wilcoxon's rank-sum test.

Significant differences were found in all the pairwise comparisons of AEV and A%EV, which were idefied as relevant indicators for measurement error.