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Abstract 

Purpose: In some headache disorders, for which the greater occipital nerve block is partly effective, 

the third occipital nerve is also suggested to be involved. We aimed to establish a simple 

technique for simultaneously blocking the greater and third occipital nerves.  

Methods: We performed a detailed examination of dorsal neck anatomy in 33 formalin-fixed 

cadavers, and deduced two candidate target points for blocking both the greater and third occipital 

nerves. These target points were tested on three Thiel-fixed cadavers. We performed ultrasound-

guided dye injections into these points, examined the results by dissection, and selected the most 

suitable injection point. Finally, this target point was tested in three healthy volunteers. We 

injected 4 ml of local anesthetic and 1 ml of radiopaque material at the selected point, guided with 

a standard ultrasound system. Then, the pattern of local anesthetic distribution was imaged with 

computed tomography.  

Results: We deduced that the most suitable injection point was the medial head of the semispinalis 

capitis muscle at the C1 level of the cervical vertebra. Both nerves entered this muscle, in close 

proximity, with little individual variation. In healthy volunteers, an anesthetic injected was 

confined to the muscle and induced anesthesia in the skin areas innervated by both nerves.  

Conclusion: The medial head of the semispinalis capitis muscle is a suitable landmark for blocking 

the greater and third occipital nerves simultaneously, by which occipital nerve involvement in 

various headache disorders may be rapidly examined and treated.  
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Introduction 

 In pain clinics, occipital nerve blocks are often performed to alleviate headache disorders. 

When criteria are applied based on the official classification of headache disorders, established by 

the International Headache Society (ICHD-3) [1], headaches relevant to the greater occipital nerve 

(GON) and/or the third occipital nerve (TON) can be identified to be cluster headache (ICHD-3: 

3.1) [2, 3], cervicogenic headache (ICHD-3: 11.2.1) [4], occipital neuralgia (ICHD-3: 13.4) [5-

7], headache attributed to craniotomy (ICHD-3: 5.5, 5.6) [8], tension-type headache associated 

with pericranial tenderness (ICHD-3: 2.1.1, 2.2.1, 2.3.1) [3], or headache attributed to cervical 

myofascial pain (ICHD-3: A11.2.5) [9, 10]. However, symptoms are often obscure without 

diagnostic nerve blocks. 

 In a subset of patients with headaches, it is reported that a selective block may only partly 

relieve the pain [9]. This partial effect can occur, when the GON and the TON are involved and/or 

when communicating rami are present between two nerves, at both peripheral and central levels [5]. 

In fact, in cluster headache [11], and probably in cervicogenic headache [4], a functional connection 

has been reported to exist between the occipital nerves and the trigeminal nerve distribution. These 

findings suggested that at least some of the headache disorders listed above might be more 

efficiently relieved by blocking both the GON and the TON. Thus, by establishing a simple method 

for simultaneously blocking these nerves, we may provide practical guidance for examining 

occipital nerve involvement and for controlling the pain. 

 Previous reports [8, 12] have shown that the GON emerges as the large medial branch of the 

second cervical spinal nerve dorsal ramus, between the posterior arch of the atlas and the lamina of 

the axis, below the obliquus capitis inferior muscle (OCI). From there, the GON ascends between 

the OCI and the semispinalis capitis muscle (SSC), then it pierces the SSC and trapezius muscles, 

near their occipital attachments. After supplying these muscles, it ascends with the occipital artery, 

divides into branches, and supplies neural transmission to the skin of the scalp, extending forward 
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as far as the vertex. The superficial medial branch of the third cervical dorsal ramus, the TON, 

curves around the lateral and dorsal surfaces of the C2-3 facet joint, which it supplies. Just above 

the C2 spinal process, the TON turns dorsally to pierce the SSC, splenius capitis, and trapezius 

muscles, and becomes cutaneous over a small area immediately below the superior nuchal line [12]. 

However, the mutual relationships between the GON and the TON in each muscle layer remain 

unknown. 

 Reportedly, the GON can be blocked at the peripheral [2, 13, 14], intermediate [15], or central 

level [7] and the TON at the central level [6]. The peripheral approach is to localize the GON for 

injection blindly with [13, 14]/without [2] identifying the occipital artery with the Doppler method. 

However, due to the large individual variations in the projection and branching patterns of the 

GON, a blind injection is not target-specific, and it requires the imprecise use of large volumes of 

analgesics. The intermediate approach is to identify the GON at the point where it exits the SSC 

[15], whereas it cannot ensure a block of the TON. In the central approach, the ultrasound-guided 

method identifying the part of the GON located superficial to the OCI is reported [7]. The only 

method reported that achieved a selective TON block is a central approach, injection into the lateral 

surface of the C2-3 facet joint [6, 16]. However, both blocks are deep approaches that require some 

technical skill [6, 7]. Especially, in obese patients, these approaches may become quite difficult [6]. 

Thus, to our knowledge, a method for blocking the GON and the TON easily and simultaneously 

has not been established.  

 The objective of this study was to establish a methodology for this block. We performed a 

detailed examination of the neck anatomy in formalin-fixed cadavers, and we deduced potential 

target points, in the fashion described in a previous study, where the deep cervical plexus and 

cervical sympathetic tracts were blocked [17]. To verify our deduction, we performed a dye 

injection study in Thiel-fixed cadavers, guided by an ultrasound system with a linear transducer. 

Then, we tested the most suitable injection point in healthy volunteers by 3-dimensional computed 

tomography (3D-CT), after injecting an admixture of local anesthetic and radiopaque material.    
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Methods 

 The cadavers were acquired through donations to the Dokkyo Medical University. Before death, 

the donors signed consent agreements to donate their bodies to be used for clinical studies. The 

format of these documents followed the requirements of the Japanese law: “Act on Body Donation 

for Medical and Dental Education.” For the part of the study that involved healthy volunteers, we 

obtained study approval from the IRB (number: 1643) of Koshigaya Hospital, Dokkyo Medical 

University, and written informed consent from all participants. 

 

Topographic anatomy in formalin-fixed cadavers 

  First, we examined the anatomy of 33 Japanese formalin-fixed cadavers (right side only), 

including 15 males and 18 females, with a median age at death of 82 (range 59-100) years. At the 

nuchal level, we defined four muscular layers, represented by the OCI, the SSC, the splenius 

capitis, and the trapezius muscles. We examined the spatial relationships between the GON and the 

TON in each muscle layer.  

 Second, on the dorsal surface of the OCI, we examined the locations of the descending 

branches of the occipital artery and vein, the GON, and the TON by using the same cadavers. For 

each structure, we measured the position along the muscle belly, as the distance (mm) from the 

origin of the muscle (C2 spinous process).  

 Third, at the SSC layer, we also measured the distances between the GON and the TON at their 

entrance to and at their exit from the SSC. 

 

Ultrasound-guided dye injection in Thiel-fixed cadavers 

 We designed a practical protocol for efficiently blocking the GON and the TON. Based on our 

data from the formalin-fixed cadavers (described below), we deduced two candidate target points, 

where the GON and the TON ran in close proximity with relatively little individual variation. The 

first target point was at the dorsal surface of the OCI, and the second was within the medial head of 
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the SSC. We examined these points in three Thiel-fixed cadavers that were compatible for 

ultrasound examinations [18]. We injected ~5 ml of water-based acrylic dye (Liquitex, International 

Art Materials Trade Association, NC) into each target points (n=3 for each point), guided by an 

ultrasound system with a 13-6 MHz linear type transducer (SonoSite M-Turbo, Fujifilm, Tokyo, 

Japan).  

 For injection at the first target point, we followed the method described by Greher et al. [7] 

with a minor modification (Fig. 1). Briefly, the ultrasound probe was placed on either side of the 

mastoid process horizontally, and then moved down the neck slowly, by which the C1 transverse 

process could be easily located under the hairline. Next, the probe was rotated slightly (the medial 

end was positioned more caudally than the lateral end) to identify the spinous process of C2, always 

bifid. This position was parallel to the long axis of the OCI. Within the plane of imaging, to 

visualize the entire shaft and tip (in-plane technique)[19], a 23-G puncture needle was then inserted 

beneath the lateral border of the probe, and advanced medially, until the needle tip was positioned 

exactly on the dorsal surface of the OCI. Then, 5 ml of dye was injected at the midpoint of the OCI. 

 For injection at the second target point (Fig. 2), we employed a horizontal orientation of the 

probe on either side of the nuchal ligament at the C1 level of the cervical vertebrae. By this, the 

medial head of the SSC, which was separated from the lateral head by the tendinous septum as 

stated in the result (Fig. 2B, C, white line), could be readily identified. By in-plane technique [19], a 

23-G puncture needle was then inserted from the midline at the C1 level beneath the lateral border 

of the probe, and advanced laterally, until the needle tip was positioned within the medial head of 

the SSC. Then, 5 ml of dye was injected. We did not identify the TON and the GON, because it was 

practically very difficult to align the plane of imaging with the TON (not shown). It is only possible 

to image nerves that run parallel or oblique to the transducer [19], and the TON pierced the SSC 

nearly perpendicular to the transducer, as described in the Results. 

 

Ultrasound-guided anesthetic injection in healthy volunteers 
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 Three volunteers received a 5 ml injection of a mixture containing iopamidol (1 ml) and 1% 

mepivacaine (4 ml) into the deduced target point. The blockade of either the GON or the TON was 

examined with pinprick and cold tests on the skin areas innervated by these nerves, according to 

previous reports [6, 12]. In detail, at the level of the superior nuchal line, we examined the central 

area, within 10 mm from the external occipital protuberance, to test blockade of the TON; from that 

point, we moved laterally, 20-30 mm, to test blockade of the GON. For the 3D-CT helicoidal scan 

of the head and neck, we employed a volume-rendering technique to characterize the spread of the 

injected local anesthetic.  
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Results  

Spatial relationships between the GON and TON and the OCI  

 In 33 formalin-fixed cadavers (Fig. 3), upon exposing the OCI, we could identify the GON in 

all cases; we identified the TON in 32 cases. In 32/33 cases (97%), the GON was located on the 

dorsal surface of the OCI, between the C1 and C2 levels. In one case (3%), a branch of the GON 

pierced the OCI.  

 We also examined relationships between the nerves and blood vessels on the dorsal surface of 

the OCI (n=33 cadavers) (Fig. 4). The mean length of the OCI from the muscle origin (C2 spinous 

process, located on the midline) to its insertion (C1 transverse process) was 54.0 ± 4.7 mm. The 

GON passed through the OCI at a point 24.0 ± 2.9 mm from the muscle origin, and the nerve 

diameter was 5.0 ± 1.8 mm. The occipital artery, a branch of the external carotid artery, descended 

through the OCI at a point 51.0 ± 8.2 mm, and the arterial diameter was 2.0 ± 0.5 mm. The occipital 

vein passed through the OCI at a point 14.1 ± 3.4 mm, and the vein diameter was 6.9 ± 1.0 mm, 

indicating that the occipital vein was in a vicinity to the GON, running ~10 mm medial to the GON.  

 Of note, we discovered a previously unknown, thick, fascia-like septum, between the SSC and 

the OCI (Fig. 3A) in all cases (100%), which was readily observed in Thiel-fixed cadavers (Online 

Resource 1, described below). This septum was attached to the C2 spinous process and separated 

the TON tract from the GON tract and the OCI. When the TON was examined after removing this 

septum, the TON passed through the OCI at a point 12.0 ± 5.0 mm from the muscle origin, and the 

nerve diameter was 4.0 ± 1.9 mm (Fig. 4). This indicated that the actual distance of the GON and 

the TON was ~12 mm although both were separated by the fascia-like septum. 

 

Spatial relationships between the GON and TON and the SSC  

 In 33 formalin-fixed cadavers, upon exposing the SSC, we could identify the GON in all cases 

and the TON in 32 cases. The GON entered the SSC medially, at a level between the atlas and the 

occipital condyles (Fig. 3A), in 32 of 33 cases (97%), and exited at a level near the superior nuchal 
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line (Fig. 3B). In the one remaining case (3%), the GON divided into two branches, and one branch 

pierced the SSC, but the other ascended medially along the SSC muscle, without piercing it. In 31 

of 32 cases (96.9%), the TON entered and exited the SSC at the C2 level, indicating that it pierced 

the SSC at an angle nearly perpendicular to this muscle. In one case of this SSC-piercing type, the 

TON divided into two branches within the SSC. In the one remaining case (3.1%), the TON did not 

pierce the SSC, but ascended medially along this muscle. 

 Of note, the SSC has two heads, the medial part is the biventer cervicis, and the lateral part is 

the complexus [20]. We discovered that the two heads were separated by a previously unknown, 

thick, tendinous septum, which was clearly visible in Thiel-fixed cadavers with ultrasound imaging 

and by dissection (described below). Both the GON and TON pierced the medial head of the SSC, 

which was separated from the lateral head by this membrane, and in most cases, their entrance 

points to the SSC were in close proximity to each other (Fig. 3A). The actual distance of the 

entrance points between the GON and the TON was 25.5 ± 5.6 mm, while the distance of their exit 

points from the SSC was longer, being 34.2 ± 8.8 mm (n = 17). 

 

Spatial relationships between the GON and TON and the splenius capitis muscle 

 In 33 formalin-fixed cadavers, upon exposing the splenius capitis muscle, we could identify the 

GON in 28 cases and the TON in 31 cases. In 22 of 28 cases (78.6%), the GON did not pierce the 

splenius capitis, but ascended medially along this muscle (Fig. 3B, C). In six of 28 cases (21.4%), 

this muscle was pierced by the GON (not shown).  

 In 29 of 31 cases (94%), the TON pierced the splenius capitis at a level between C1 and C2 

(Fig. 3B, C). In the remaining two cases (6%), the TON did not pierce this muscle, but ascended in 

the space between this muscle and the SSC. 

 

Spatial relationships between the GON and TON and the trapezius muscle  
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 In 33 cases, upon exposing the trapezius muscle, we could identify the GON in all cases and 

the TON in 30 cases. Both the GON and the TON pierced the trapezius, after dividing into several 

branches (Fig. 3D), and terminated in the skin.  

 In 32 of 33 cases (97%), the GON pierced the trapezius at the level of the superior nuchal line. 

In the one remaining case (3%), the GON ascended along the lateral margin of the trapezius.  

 In 29 of 30 cases (96.7%), the TON pierced the trapezius at a level between C1 and C2. In the 

one remaining case (1/30; 3.3%), after dividing into two branches, one branch pierced the trapezius 

and the other ascended between the SSC and trapezius without piercing the trapezius. 

 

Ultrasound-guided dye injection in Thiel-fixed cadavers 

       Concerning the two candidate target points, one was on the dorsal surface of the OCI, the actual 

distance of the GON and the TON was ~12 mm although both were separated by a thick fascia-like 

septum (Fig. 4, Online Resource 1A, B). Another was in the medial head of the SSC where the 

actual distance of the entrance points between both nerves was ~26 mm (Fig. 3A).  

 In all three Thiel-fixed cadavers, dye injections at the first target point (n=3), the dorsal surface 

of the OCI (Fig. 1), caused the dye to stay in the compartment of the GON tract, but it did not 

spread into the TON compartment (Online Resource 1C). As noted in formalin-fixed cadavers (Fig. 

3A), the TON tract was separated from the GON tract and the OCI by a fascia-like septum (Online 

Resource 1A, B). The inhibition of dye infiltration into the TON tract by this fascia-like septum 

suggested that anesthetic injection into this point blocks only the GON and blocking of the TON 

may be difficult.  

 Dye injections at the second target point (n=3), the medial head of the SSC (Fig. 2), caused the 

dye to stay in the medial head, and dye surrounded both the GON and TON tracts (Online Resource 

2C). As described in formalin-fixed cadavers, the medial and lateral heads of the SSC were 

separated by a tendinous septum (Online Resource 2A, B), which was noted in the ultrasound 
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images as a thick, white line between the medial and lateral heads of the SSC (Fig. 2B, C). Dye did 

not spread into the lateral head of the SSC (Fig. 2C).  

 Therefore, we considered that the second target point, but not the first point is the best place for 

blocking of both the GON and TON and decided to perform healthy volunteer study only at the 

second target point. 

 

Ultrasound-guided injection of anesthetic and contrast medium at the second target point in 

healthy volunteers 

  A 3D-CT scan showed that the contrast medium was confined to the medial head of the SSC 

(Fig. 5). Sensory blocks of both nerves, the TON at the central area within 10 mm from the external 

occipital protuberance and of the GON at the lateral area 20-30 mm from that point were observed 

in all volunteers. It was noteworthy, that identifying the SSC medial head and the anesthetic 

injection, guided with ultrasound imaging, can be performed very easily within a few minutes.   
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Discussion 

We performed a detailed examination of dorsal neck anatomy in formalin-fixed cadavers and Thiel-

fixed cadavers. Figure 6 shows a summary schematic diagram of the results. That examination led 

to the deduction of a candidate target injection point for blocking both the GON and the TON. 

These findings were confirmed in healthy volunteers, by scanning with 3D-CT and the sign of 

sensory block after injecting an admixture of local anesthetic and radiopaque material.  

 In Thiel-fixed cadaver study, the first target point we deduced seemed to have some difficulty 

to block the TON because of the presence of a thick, fascia-like septum, which inhibited the spread 

of injected dye to the compartment that held the TON. To achieve the TON block, it might be 

possible to penetrate the septum with a large volume of local anesthetic, but that would increase the 

risk of anesthetic absorption into the vein, which represents an adverse side effect. This risk was 

corroborated by the finding that the occipital vein was in close proximity to the GON at this point 

(Fig. 4).  

 On the other hand, the second target point, which we deduced and decided to examine in 

healthy volunteer study, had some advantages: First, both the GON and the TON entered the medial 

head of the SSC, in close proximity, with little individual variation. Second, because the SSC is 

large and thick and its medial head is separated by the thick septum from the lateral head, this target 

point is easily identifiable by ultrasound. By injecting into this point, in Thiel-fixed cadavers, the 

dye surrounded both the GON and the TON and stayed within the medial head. Our findings of the 

tendinous septum between the two heads of the SSC as well as the fascia-like septum between the 

SSC and the OCI have not been reported to our knowledge; therefore, we consider these to be novel 

anatomical findings. 

 In healthy volunteers, the injection solution was confined to the medial head of the SSC, and a 

small amount of local anesthetic (i.e., 4 ml) could produce an effective block. In fact, the thick 

tendinous septum separating the medial and lateral heads of the SSC may enable the anesthetic to 

be confined to the vicinity of both nerves, leading to an efficient nerve block. This method is the 
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intermediate approach, which requires less skill compared to the central approach [6, 7] with a 

performance time of only a few minutes, because the SSC is located more superficially and 

identifying its medial head is very easy. Therefore, occipital nerve involvement in various headache 

disorders may be rapidly examined and treated by this technique. This method may be cost-efficient 

and profitable in medical economics.  

 Concerning the intramuscular injection of anesthetics, injection into the piriformis muscle is 

often performed in chronic low back and sciatic pain patients [21]. We also previously reported 

anesthetic injection into the longus capitis muscle for blocking both the deep cervical plexus and the 

cervical sympathetic trunk [17]. Although a direct injection of anesthetic into the muscle may lead 

to myotoxicity, the degree of risk is dependent on the toxicity of the local anesthetic and the dose, 

frequency, and interval of the injection. Long-acting bupivacaine and ropivacaine is reported to 

show myotoxicity [22]. However, multiple injections of short-acting mepivacaine into the longus 

colli muscle did not manifest any clinical signs of cervical myopathy [23]. Trigger point injections 

in the treatment of headache disorders using procaine is reported to be the least likely associated 

with myonecrosis [10]. Taken together, these reports indicate that ultrasound-guided intramuscular 

injections of anesthetics are efficient and practical methods for peripheral nerve blocks and that 

mepivacaine-induced myopathy (if it occurs) might only occur at a subclinical level. 

 In conclusion, our present study indicated a new method for simultaneously blocking the GON 

and the TON. By this method, occipital nerve involvement in various headache disorders may be 

rapidly examined and treated. The first target point may be applicable for a single block of the GON.  

However, our findings require support from future clinical studies. Several approaches are available 

for a single block of the GON or the TON. Therefore, it is important to select the method most 

suited to the purpose for each case.



 14 

Acknowledgement 

The authors thank Drs. Akihito Mizutani and Kaori Shirakawa for their critical reading of the 

manuscript and valuable discussions and Prof. Koichi Hirata for critical comments on classification of 

headache disorders relevant to occipital nerves.  We also thank Mr. Hideo Sakurai for help arrangement 

of all cadaver studies. This work was supported in part by an official donation from Mr. Jin Sasanuma 

(no conflict of interest).   

  



 15 

Conflict of Interests Statement 

Ken Kariya has no conflict of interest. 

Yosuke Usui has no conflict of interest. 

Naoko Higashi has no conflict of interest. 

Tatsuo Nakamoto has no conflict of interest. 

Hironobu Shimbori has no conflict of interest. 

Satoshi Terada has no conflict of interest. 

Hideo Takahashi has no conflict of interest. 

Hisashi Ueta has no conflict of interest. 

Yusuke Kitazawa has no conflict of interest. 

Yasushi Sawanobori has no conflict of interest. 

Yasuhisa Okuda has no conflict of interest. 

Kenjiro Matsuno has no conflict of interest. 

 

 



 16 

References  

 

1. Headache Classification Committee of the International Headache S. The International 

Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629-808. 

2. Blumenfeld A, Ashkenazi A, Napchan U, Bender SD, Klein BC, Berliner R, Ailani J, Schim J, 

Friedman DI, Charleston Lt, Young WB, Robertson CE, Dodick DW, Silberstein SD, Robbins 

MS. Expert consensus recommendations for the performance of peripheral nerve blocks for 

headaches--a narrative review. Headache. 2013;53:437-46. 

3. Tobin J, Flitman S. Occipital nerve blocks: when and what to inject? Headache. 2009;49:1521-

33. 

4. Biondi DM. Cervicogenic headache: a review of diagnostic and treatment strategies. J Am 

Osteopath Assoc. 2005;105:16S-22S. 

5. Cesmebasi A, Muhleman MA, Hulsberg P, Gielecki J, Matusz P, Tubbs RS, Loukas M. 

Occipital neuralgia: anatomic considerations. Clin Anat. 2015;28:101-8. 

6. Eichenberger U, Greher M, Kapral S, Marhofer P, Wiest R, Remonda L, Bogduk N, Curatolo 

M. Sonographic visualization and ultrasound-guided block of the third occipital nerve: 

prospective for a new method to diagnose C2-C3 zygapophysial joint pain. Anesthesiology. 

2006;104:303-8. 

7. Greher M, Moriggl B, Curatolo M, Kirchmair L, Eichenberger U. Sonographic visualization 

and ultrasound-guided blockade of the greater occipital nerve: a comparison of two selective 

techniques confirmed by anatomical dissection. Br J Anaesth. 2010;104:637-42. 

8. Tubbs RS, Mortazavi MM, Loukas M, D'Antoni AV, Shoja MM, Chern JJ, Cohen-Gadol AA. 

Anatomical study of the third occipital nerve and its potential role in occipital headache/neck 

pain following midline dissections of the craniocervical junction. J Neurosurg Spine. 

2011;15:71-5. 

9. Dash KS, Janis JE, Guyuron B. The lesser and third occipital nerves and migraine headaches. 

Plast Reconstr Surg. 2005;115:1752-8; discussion 59-60. 

10. Robbins MS, Kuruvilla D, Blumenfeld A, Charleston Lt, Sorrell M, Robertson CE, Grosberg 

BM, Bender SD, Napchan U, Ashkenazi A, Peripheral Nerve B, Other Interventional 

Procedures Special Interest Section of the American Headache S. Trigger point injections for 

headache disorders: expert consensus methodology and narrative review. Headache. 

2014;54:1441-59. 

11. Busch V, Jakob W, Juergens T, Schulte-Mattler W, Kaube H, May A. Functional connectivity 

between trigeminal and occipital nerves revealed by occipital nerve blockade and nociceptive 

blink reflexes. Cephalalgia. 2005;26:50-5. 

12. Baron EM. Spinal cords and spinal nerves: Gross anatomy. In: Sandring S. editor-in-chief. 

Gray's Anatomy. 41st ed. philadelphia: Elsevier, 2016. p.768. 

13. Arai T, Ishikawa K, Saito T, Hashimoto Y, Asai T, Okuda Y. Distance from the external occipital 

protuberance to the occipital artery for occipital nerve block. J Anesth. 2013;27:801-2. 

14. Okuda Y, Ishikawa K, Usui Y, Nagao M, Ikeda T, Kitajima T. Use of an ultrasound doppler 

flowmeter for occipital nerve block. Reg Anesth Pain Med. 2002;27:444-5. 

15. Natsis K, Baraliakos X, Appell HJ, Tsikaras P, Gigis I, Koebke J. The course of the greater 

occipital nerve in the suboccipital region: a proposal for setting landmarks for local anesthesia 

in patients with occipital neuralgia. Clin Anat. 2006;19:332-6. 

16. Finlayson RJ, Etheridge JP, Vieira L, Gupta G, Tran DQ. A randomized comparison between 

ultrasound- and fluoroscopy-guided third occipital nerve block. Reg Anesth Pain Med. 

2013;38:212-7. 

17. Usui Y, Kobayashi T, Kakinuma H, Watanabe K, Kitajima T, Matsuno K. An anatomical basis 



 17 

for blocking of the deep cervical plexus and cervical sympathetic tract using an ultrasound-

guided technique. Anesth Analg. 2010;110:964-8. 

18. Hayashi S, Homma H, Naito M, Oda J, Nishiyama T, Kawamoto A, Kawata S, Sato N, 

Fukuhara T, Taguchi H, Mashiko K, Azuhata T, Ito M, Kawai K, Suzuki T, Nishizawa Y, Araki 

J, Matsuno N, Shirai T, Qu N, Hatayama N, Hirai S, Fukui H, Ohseto K, Yukioka T, Itoh M. 

Saturated salt solution method: a useful cadaver embalming for surgical skills training. 

Medicine (Baltimore). 2014;93:e196. 

19. Gray AT. Ultrasound-guided regional anesthesia: current state of the art. Anesthesiology. 

2006;104:368-73, discussion 5A. 

20. Mayoux-Benhamou MA, Revel M, Vallee C. Selective electromyography of dorsal neck 

muscles in humans. Exp Brain Res. 1997;113:353-60. 

21. Fowler IM, Tucker AA, Weimerskirch BP, Moran TJ, Mendez RJ. A randomized comparison of 

the efficacy of 2 techniques for piriformis muscle injection: ultrasound-guided versus nerve 

stimulator with fluoroscopic guidance. Reg Anesth Pain Med. 2014;39:126-32. 

22. Zink W, Graf BM. Local anesthetic myotoxicity. Reg Anesth Pain Med. 2004;29:333-40. 

23. Usui Y, Kobayashi T, Kakinuma H, Watanabe K, Kitajima T, Matsuno K. In Response 

"Ultrasound-guided deep or intermediate cervical plexus block: the target should be the 

posterior cervical space". Anesth Analg. 2010;111:1565. 

 

 

 

  



 18 

FIGURE LEGENDS 

Fig. 1. Ultrasound image of ultrasound-guided injection at the first target point, the dorsal surface of 

the OCI (obliquus capitis inferior muscle) in the Thiel-fixed cadaver. (A) Schematic drawings show 

the site of the injection between the OCI and the SSC (semispinalis capitis muscle) in the nuchal 

region. The injection point is (left) at the dorsal surface of the OCI, ~3 mm lateral to the GON 

(greater occipital nerve), in which injected dye is shown; (middle) the needle passes through the SSC 

and (right) through the splenius capitis muscles. TON, third occipital nerve. (B, C) Ultrasound 

images of an oblique section of the neck from the C2 to C1 level show the inserted needle (light 

blue). The tendinous septum of the SSC (white line) is drawn for comparison to Fig. 4. (B) Before 

dye injection; (C) after the dye injection, the space between the OCI and the SSC became enlarged. 

When dissected, dye was restricted to the compartment that holds the GON (see Fig. 2C). 

 

Fig. 2. Ultrasound image of ultrasound-guided injection into the second target point, the medial head of 

the SSC (semispinalis capitis muscle) in a Thiel-fixed cadaver. (A) Schematic drawings show the 

site of the injection within the three muscle layers in the nuchal region. The injection point is (left) 

on top of the SSC, on the medial side of the septum (white line), in which injected dye is shown; 

(middle) the needle passes through the splenius capitis and (right) through the trapezius muscles. 

GON greater occipital nerve; TON, third occipital nerve. (B, C) Ultrasound images of a transverse 

section of the neck at the C1 level show the inserted needle (light blue) and the tendinous septum 

(white) between the medial and lateral heads of the SSC.  (B) Before dye injection; (C) after the 

dye injection, the medial head of the SSC became enlarged, but not the lateral head.  

 

Fig. 3. Spatial relationships between the GON (greater occipital nerve) and TON (third occipital nerve) 

and four muscle layers in the neck. (Left panels) Representative photographs of neck dissections are 
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shown at different layers. (Right panels) The same photographs are shown with cartoons and labels 

that identify the GON (yellow) and TON (light green) tracts in the obliquus capitis inferior (OCI, 

brown), semispinalis capitis (SSC, purple), splenius capitis (light blue), trapezius (yellow brown), 

and sternocleidomastoid (orange) muscles. (A) At the OCI layer, the GON is located at the dorsal 

surface of the OCI (brown). Both the GON and the TON enter the median head of the SSC in close 

proximity, in most cases. The SSC is lifted medially with the forceps. A fascia-like septum (white, 

only partly remained) is located between the GON and the TON; (B) At the SSC layer, the GON 

exits the SSC at a level near the superior nuchal line. The TON exits the SSC and enters the splenius 

capitis at a level between C1 and C2. (C) At the splenius capitis layer, the TON exits the splenius 

capitis at its medial border, and the GON ascends medially, along the splenius capitis. (D) At the 

trapezius layer, two branches each (red circles) of the TON and the GON exit the trapezius at its 

medial border. 

 

Fig. 4. Relationships between nerves and blood vessels at the dorsal surface of the OCI (obliquus 

capitis inferior muscle). Removing the fascia-like septum (transparent light brown) that covers the 

OCI revealed the third occipital nerve (TON, green), the occipital vein (light blue), the greater 

occipital nerve (GON, yellow), and the occipital artery (red). (Inset Table) The mean distances from 

the origin of the muscle (mm, mean ± SD, n= 33) were calculated for the TON, occipital vein, GON, 

and occipital artery. The occipital vein was in a vicinity to the GON at this point. The fascia-like 

septum separated the TON tract from the GON tract and the OCI. 

 

 

Fig. 5.  Representative images of a scanographic reconstruction of the neck with 3D-CT images, after 

injection of a mixture of iopamidol and mepivacaine into the medial head of both sides of the SSC 
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(semispinalis capitis muscle), in a healthy volunteer. Outlines of the SSC are drawn (purple) in the 

transverse images. The contrast medium was confined to the injected site. 

 

Fig. 6. A schematic summary diagram shows the spatial relationships between both the greater 

occipital nerve (GON, yellow) and the third occipital nerve (TON, light green) and the different 

muscle layers. Both the GON and TON entered the medial head (purple) of the SSC (semispinalis 

capitis muscle) in close proximity to each other. The GON and OCI (obliquus capitis inferior 

muscle) but not TON were covered by the fascia-like septum (light brown). 

 

Online Resource 1. Gross image of an ultrasound-guided dye injection into the dorsal surface of the 

OCI (obliquus capitis inferior muscle) in a Thiel-fixed cadaver. (A) Schematic drawing indicates 

the orientation of the fascia-like septum (white lattice) that covers the greater occipital nerve (GON, 

yellow) and the dorsal surface of the OCI (brown); (left) dorsal view, (right) sagittal view. Injected 

dye (green) is shown beneath the fascia-like septum. (B, C) Serial photographs of a dissected 

cadaver (left) and the same photographs with labels (right). SSC, semispinalis capitis muscle. (B) 

The fascia-like septum (white) covers the GON (yellow) and the dorsal surface of the OCI (brown). 

The third occipital nerve (TON, light green) was located outside of this septum, in a compartment 

separate from the GON. (C) Dye was restricted to the compartment that holds the GON (yellow). 

 

Online Resource 2. Gross image of an ultrasound-guided dye injection into the medial head of the 

SSC (semispinalis capitis muscle) in a Thiel-fixed cadaver. (A) Schematic drawing shows the 

greater occipital nerve (GON, yellow) and the third occipital nerve (TON, light green) piercing the 

medial head of the SSC (latticed purple). (Left) dorsal view, (right) sagittal view. Injected dye 

(green) is shown in the medial head. (B) The tendinous septum (pink) is readily seen between the 
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medial (latticed purple) and lateral (purple) heads of the SSC. The middle and cranial parts of the 

SSC are cut transversely to show the tendinous septum and the fascia-like septum (light brown). 

(C) At the medial head (latticed purple) of the SSC, both the GON and TON are surrounded by the 

dye (green). In this case, the TON divided into two branches within the SSC. 


