
Post-transcriptional regulation of RUNX genes in neuroblastoma45（2）（2018） 43

pediatric malignancy, and lower expression of RUNX3 
results in poorer outcome5）. Interestingly, ectopic syn-
thesis of RUNX3 induces protein degradation of 
N-Myc oncogene 5）, suggesting the function of RUNX3 
as a tumor suppressor. On the other hand, clinical rel-
evance of RUNX1 in neuroblastoma remains largely 
unknown. Although mRNA expression of RUNX1 is 
elevated during neuroblastoma carcinogenesis 6）, pro-
tein level of RUNX1 is maintained very low in neuro-
blastoma cell lines 4）. One plausible explanation of this 
discrepancy is the 3’UTR mediated post-transcription-
al regulation through microRNAs 7～9）. In this study, 
we investigated the post-transcriptional regulation of 
RUNX genes in neuroblastoma cell lines and discov-
ered that N-Myc-activated microRNAs inhibited pro-
tein syntheses of both RUNX1 and RUNX3 through 3’
UTR sequences.

INTRODUCTION

Runt related transcription factors, RUNX1 and 
RUNX3, are lineage specific developmental regulators 
in dorsal root ganglion neurogenesis 1～3）. Although 
RUNX1 and RUNX3 share an evolutionary conserved 
DNA recognition domain, functional redundancy is 
surprisingly low, suggesting the spatio-temporal gene 
regulations by transcriptional and post-transcriptional 
mechanisms. Previously, we reported that protein lev-
els of RUNX1 and RUNX3 were critical for neuroblas-
toma cell growth 4）. Neuroblastoma is a heterogeneous 
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METHODS

Plasmid construction
All recombinant DNA experiments were appropri-

ately designed according to institutional regulations 
and the approved protocol was strictly observed. 3’
UTR sequences of human RUNX1 and RUNX3 were 
amplified by PCR（PrimeSTAR polymerase, Takara 
Bio Inc., Shiga, Japan）from genomic DNA of human 
embryonic fibroblasts（OUMS36, JCRB1006.1, Japa-
nese Collection of Research Bioresources Cell Bank, 
Osaka, Japan）. Primer sequences were：5’-GGATCT 
CGCTGTAGGTCA-3’ and 5’-CTGTGTACCGTGGAC 
TGTGG-3’ for RUNX1 3’UTR or 5’-CTACTGACCGC 
CCTGGTG-3’ and 5’-CCAAGCAAACGATAGTGCA 
A-3’ for RUNX3 3’UTR. The amplified products were 
inserted into TA-cloning vector pMD20（Takara Bio 
Inc .）and the c loned fragments were Sanger-
sequenced. We confirmed that the cloned fragments 
were identical to reference RUNX1 and RUNX3 3’
UTR, respectively（GRCh37/hg19 , UCSC genome 
browser）. 3’UTR sequences were sub-cloned into 
microRNA sensor plasmids pmirGLO（Promega, Fitch-
burg, WI, USA）using SacI and SalI recognition motifs

（Fig. 1）. The 4kbp of RUNX1 3’UTR was further 
divided into 5’ or 3’ regions using XbaI restriction 
enzyme（Fig. 1）. The plasmid pcDNA3-tRNA scaffold 

Streptavidin aptamer（tRSA plasmid#32200, Addgene, 
Cambridge, MA, USA）is a gift from Dr. Hidekazu 
Iioka. We sub-cloned tRSA sequence into another 
expression vector pEBMulti-Neo（Wako Pure Chemi-
cal Industries, Ltd. Osaka, Japan）using KpnI and 
XhoI enzymes（affinity tag plasmids）. Subsequently, 
the 5’ region of RUNX1 3’UTR or the full length 
RUNX3 3’UTR was inserted into SacI-SalI motifs as 
a bait sequence of a microRNA pull down assay.

Cell culture and plasmid transfection
The sources and culture conditions of neuroblasto-

ma cell lines have been described elsewhere4）. Plas-
mid expression vectors were delivered into cells using 
4D-Nucleofector system（Lonza, Basel, Switzerland）. 
The optimized electroporation program EH-100（Cell 
line kit SF）achieved nearly 80％ transfection efficien-
cy（data not shown）.

MicroRNA sensor reporter assay
MicroRNA sensor plasmids with distinct 3’UTR 

sequences（Fig. 1）were delivered into NGP neuroblas-
toma cell line or HepG2 hepatoblastoma cell line by 
electroporation. 24 hours after plasmid delivery, Fire-
fly and Renilla luciferase syntheses were quantified 
with Dual-Luciferase reporter assay（Promega）. 
Luminescent signals were measured by a luminometer

Fig. 1
Schematic diagram of microRNA sensor plasmids. Each 3’UTR test sequence 
was fused after Firefly luciferase coding sequence（luc2）. Full length RUNX1 
3’UTR（4 kbp）was divided into either the former（5’）or the latter half（3’）. 
Other plasmid sequences including internal control（Renilla luciferase gene）
are not shown. SacI, SalI or XhoI denotes the recognition sequence of restric-
tion enzyme for the plasmid construction.
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（AB-2280, ATTO, Tokyo, Japan）.

MicroRNA pull down and quantitative RT-PCR
Biotin binding RNA aptamer（tRSA）10,11）was used 

as an affinity tag to purify microRNAs/3’UTR com-
plexes. tRSA expression plasmids with distinct 3’UTR 
sequences were delivered into NGP neuroblastoma 
cell line by electroporation. Cells which incorporated 
and inherited the episomal plasmids were selected by 
neomycin resistance cassette（0.8 mg/ml G418, Ther-
moFisher Scientific, Waltham, MA, USA）. 7 days after 
plasmid delivery, cytoplasmic fractions were gently 
lysed（Cell Lysis Buffer M, Wako）and insoluble frac-
tions were removed by centrifugation. The soluble 
fractions were used for tRSA purification with biotin-
conjugated magnetic beads（Magnosphere MS300, 
Takara）. Pulled down microRNAs were eluted 
through one minute’s denature at 90℃. Taqman® 
MicroRNA Assays（ThermoFisher）to quantify specif-
ic microRNA are as follows：hsa-miR-17（AssayID：
002308）, hsa-miR-18a（AssayID：002422）, hsa-miR-
19a（AssayID：000395）, hsa-miR-20a（AssayID：
000580）and hsa-miR-130a（AssayID：000454）. Each 
microRNA copy number was quantified using real-
time PCR machine（QuantStudio3, ThermoFisher）. 
Log2 copy number（arbitrary base line）was calculated 
as 40 minus cycle of threshold.

3’UTR target inhibition and immunoblotting
To inhibit multiple N-Myc regulated microRNAs, 

we adopted 3’UTR target protection assay（miScript 
Target Protector, Qiagen, Hilden, Germany）. Target 
protection enables to block the microRNA binding 
with specific mRNA（i.e. RUNX1 or RUNX3）without 
affecting other target genes. 3’UTR target sequences 
selected for the assay are as follows：R1-miR18

（TTATTTTTAATTTTTCCGCA CCTTATCAATTG 
CAAAATGC）, R1-miR20（TTTACACACATGCAGT 
AGCA CTTTGGTAAGAGTTAAAGAG）, R3-miR19

（AGCTGGGTGGAAACTGCTTT GCACTATCGTTT 
GCTTGGTG）and R3-miR20（CAGACCGGCTCCTC 
CATGCA CTTTACCAGCTCAACGCATC）. 200 pmol 
of target protectors（small RNA）were delivered into 
the KELLY neuroblastoma cell line by electroporation. 
48 hours after RNA delivery, cells were collected and 
whole cell proteins were solubilized in urea solution

（7M urea, 2M thiourea and 4％ CHAPS, ThermoFish-
er）. The entangled genomic DNA was sheared by 
sonication for 15 min（Bioruptor, Diagenode SA, Sera-
ing, Belgium）. Procedures for protein quantification 
and immunoblotting have been described elsewhere 12）. 
Primary antibodies used in this study are as follows：
RUNX1（#4336, Cell Signaling Technologies, Danvers, 
MA, USA）, RUNX3（R3-5G4, a gift from Dr. Kosei 
Ito, also available at MBL, Nagoya, Japan）and 
GAPDH（#5174, Cell Signaling）.

Neuroblastoma differentiation assay
1 mg of pmaxGFP with or without 200 pmol of each 

target protector were delivered into the SK-N-FI 
neuroblastoma cell line by electroporation. 72 hours 
after RNA and plasmid delivery, morphology of GFP 
positive cells were observed by a fluorescence micro-
scope（BZ-X700, KEYENCE, Osaka, Japan）.

Statistical analyses
Mean values of numerical data（relative luciferase 

activities or Log2 copy numbers of pulled down 
microRNAs）were compared using GraphPad PRISM

（version 6.0, GraphPad software Inc, La Jolla, CA, 
USA）. We adopted Fisher’s least significant difference 
procedure for multiple comparisons between two 
groups. Thus, we compared two particular groups 
with Student’s t-test contingent upon one way-analy-
sis of variance rejected the null hypothesis（i.e. all the 
groups are same）. P-value less than 0.05 was defined 
as statistically significant.

RESULTS

3’UTR sequences of RUNX1 and RUNX3 inhibited 
reporter gene translation

To investigate the post-transcriptional gene regula-
tion of RUNX1 and RUNX3, we constructed microR-
NA sensor plasmids to detect microRNAs in neuro-
blastoma cell lines. We compared the degree of 
reporter inhibition in between NGP and HepG2 cell 
lines, because the two displayed distinct protein syn-
theses of RUNX1 and RUNX3（data not shown）. In 
HepG2（hepatoblastoma）, test sequence insertion mod-
estly inhibited the reporters activity（Fig. 2）. Howev-
er, the inhibition was sequence-independent, since all 
the different inserts displayed similar degree of inhibi-
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tion（Fig. 2）. In NGP（neuroblastoma）, full length 3’
UTR of RUNX1 or RUNX3 displayed more remark-
able inhibition than those observed in HepG2（Fig. 2）. 
On the other hand, the deletion of 5’ region of 
RUNX1 3’UTR diminished the inhibition up to similar 
degree as observed in HepG2（Fig. 2）. These data 
indicated that neuroblastoma specific microRNAs 
inhibited the reporters activity through 3’UTR 
sequence of RUNX1（5’-2kbp）or RUNX3.

Computational analysis predicted bindings of N-Myc-
activated microRNAs in RUNX1/RUNX3-3’UTR

Next, microRNA bindings with human RUNX1（5’
-2 kbp）and RUNX3 3’UTR（2.5 kbp）were predicted 
using mirSVR algorithm（microrna.org）13）. Among the 
multiple potential bindings of microRNAs, N-Myc-
activated microRNAs were detected in particular 
sequences. We termed the four sequences as follows

（Fig. 3）：R1miR18（～0.5 kbp of RUNX1 3’UTR, pre-

dicted to bind to miR-18a/b）, R1miR20（～1.9kbp of 
RUNX1 3’UTR, predicted to bind to either miR-17, 
miR-20a/b or miR-106a/b）, R3miR20（～0.8 kbp of 
RUNX3 3’UTR, predicted to bind to either miR-17, 
miR-20a/b or miR-106a/b）and R3miR19（～2.5kbp 
of RUNX3 3’UTR, predicted to bind to either miR-
19a/b or miR-130a/b）（Fig. 3）.

Physical bindings between N-Myc-activated microR-
NAs and RUNX1/RUNX3-3’UTR

To validate the in silico prediction of microRNA 
bindings, we performed a microRNA pull down assay 
using 3’UTR sequences as biochemical probes. We 
compared enrichments of microRNAs（miR-17, miR-
18a, miR-19a, miR-20a and miR-130a）by comparing 
between tRSA affinity tag（no bait）and tRSA-3’UTR

（RUNX1 or RUNX3, Fig. 4）. 5’ region of RUNX1 3’
UTR significantly enriched miR-17 , miR-18a and 
miR-20a（Fig. 4）. Meanwhile, full length RUNX3 3’
UTR enriched miR-17, miR-19a, miR-20a and miR-
130a（Fig. 4）. Data indicates that the 3’UTR sequence 
of RUNX1 or RUNX3 is sufficient to bind to N-Myc-
activated microRNAs in a neuroblastoma cell line.

Target protection of N-Myc-activated microRNAs 
induced protein synthesis of RUNX1 or RUNX3

To assess the impact of N-Myc-activated microR-
NAs on RUNX1 or RUNX3, we utilized an oligo-
nucleotide inhibitor, 3’UTR target protector. One spe-
cific target protector enables to block all the potential 
bindings of microRNAs around the target sequence, 
without affecting the other target genes. Transfection 
of anti-R1miR18（aR1miR18）or aR1miR20 increased 
protein synthesis of RUNX1 in a neuroblastoma cell 
line, but the effect against RUNX3 or GAPDH was 
negligible（Fig. 5）. Combination of aR1miR18 and 
aR1miR20 did not display further additive increase of 
RUNX1 protein（Fig. 5）. Meanwhile, transfection of 
aR3miR19 or aR3miR20 increased protein synthesis 
of RUNX3, and the effect against RUNX1 or GAPDH 
was negligible（Fig. 5）. Combination of aR3miR19 and 
aR3miR20 displayed an additive increase of RUNX3 
protein（Fig. 5）. These data indicate, that the 3’UTR 
sequences, especially around R1miR18, R1miR20, 
R3miR19 or R3miR20, are necessary for inhibition of 
protein synthesis in a neuroblastoma cell line.

Fig. 2
Neuroblastoma specific microRNAs inhibited reporter 
activity through 3’UTR of RUNX1（5’）or RUNX3. Each 
microRNA sensor plasmid was delivered into the NGP 
neuroblastoma or HepG2 hepatoblastoma cell line by elec-
troporation. Scatter plot indicates the normalized reporter 
activity（Firefly luciferase/Renilla luciferase）. Line summa-
ry denotes mean±SEM. Degree of inhibition was mea-
sured by comparing between control（no insert）and each 
3’UTR insertion. Note that NGP displayed significantly 
stronger inhibition than those observed in HepG2 and the 
phenomena depended on RUNX1（5’）or RUNX3 3’UTR. 
Asterisk indicates statistically significant difference

（Student’s t, p＜0.05）.
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Target protection of N-Myc-activated microRNAs 
arrested cell proliferation and induced differentiation of 
a neuroblastoma cell line

Some neuroblastoma cell line induces neuronal dif-
ferentiation by ectopic synthesis of RUNX1 or RUNX3 
protein 4）. We addressed the possibility whether the 3’
UTR target protector could induce the neuronal dif-
ferentiation. Consistent with the above observations

（Fig. 5）, transfection of aR1miR18 , aR1miR20 , 

aR3miR19 or aR3miR20 halted cell proliferation of 
SK-N-FI cell line and induced neurite extensions（Fig. 
6）. These results indicate that the 3’UTR sequences

（around R1miR18, R1miR20, R3miR19 or R3miR20）
are necessary for continual proliferation and block of 
differentiation in a neuroblastoma cell line.

Fig. 3
mirSVR algorithm predicted bindings of N-Myc-activated microRNAs 
to RUNX1 and RUNX3-3’UTR. Putative microRNA binding sites to 
RUNX1（5’）or RUNX3 3’UTR are shown. Blue arrows indicate the 
upper and lower limits of 3’UTR bait sequence, which was fused with a 
streptavidin RNA aptamer for a pull down assay. Yellow highlight indi-
cates the binding sites for N-Myc-activated microRNAs, termed as 
R1miR18, R1miR20, R3miR19 or R3miR20.



Ken-ichi Inoue48 DJMS

Fig. 4
N-Myc-activated microRNAs physically bind to RUNX1 or RUNX3-3’
UTR in a neuroblastoma cell l ine. Streptavidin RNA aptamer

（tRSA）10,11）expression plasmid with distinct 3’UTR sequences were 
delivered into the NGP neuroblastoma cell line by electroporation. Copy 
numbers of biotin-pulled down microRNAs were quantified by real 
time RT-PCR. Sequence specific binding was measured by comparing 
between a control（no bait）and each 3’UTR bait sequence. The scatter 
plot indicates Log2 copy number（arbitrary base line）for designated 
microRNA. Line summary denotes mean±SEM. Asterisk indicates sta-
tistically significant difference（Student’s t, p＜0.05）.

Fig. 5
Target protection of N-Myc-activated microRNAs induced protein synthesis of RUNX1 
or RUNX3 in a neuroblastoma cell line. Target protectors（small RNA）were delivered 
into the KELLY neuroblastoma cell line by electroporation. One specific target protector 
enables to block all the potential bindings of microRNAs around the target sequence, 
without affecting the other target genes. 40 mg of whole cell protein lysate was loaded 
per lane. Immunoblotting against RUNX1 or RUNX3 were performed. GAPDH served 
as an internal control.
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DISCUSSION

Post-trancriptional regulation of RUNX1/RUNX3 
genes in neuroblastoma cell lines

Unlike established oncogenes and tumor suppres-
sors, roles of RUNX genes in cancer are context-
dependent and have been debated 14,15）. In neuroblasto-
ma cell lines, functional RUNX1 protein is necessary 
for cell growth（i.e. RUNX1 could work as an onco-
gene）but conversely, excess amount of either RUNX1 
or RUNX3 is also detrimental（i.e. RUNX1/RUNX3 as 
tumor suppressors）4）. Thus, neuroblastoma is actively 
maintaining the levels of RUNX1 and RUNX3 proteins 
in a very narrow range for continual cell growth. In 
this study, we sought to characterize the molecular 
bases of such tight controls, focusing on the post-tran-
scriptional regulation by microRNAs. One major find-
ing is that N-Myc-activated microRNAs inhibits the 
protein syntheses of both RUNX1 and RUNX3 , 
through two binding sequences in 3’UTR.

N-Myc oncoprotein and RUNX3 tumor suppressor 
could be linked through microRNAs

Amplification of MYCN locus is one of the first 
genetic abnormalities to be associated with poor 
patients’ outcome in neuroblastoma16）. Myc transcrip-

tion factors globally reprogram cells to drive prolifera-
tion through a battery of target genes, including 
microRNAs17～20）. In neuroblastoma, comprehensive 
analyses identified the N-Myc-activated microRNAs 
as highly expressed non-coding RNAs in unfavorable 
patients 21,22）. A more integrated approach revealed 
the framework of regulatory networks：N-Myc binds 
to microRNA gene promoters and the upregulated 
microRNAs cooperatively inhibit the target mRNAs23）. 
Overall, the target mRNAs have several microRNA 
binding sequences, suggesting concerted inhibition by 
multiple N-Myc-activated microRNAs 23）. In this 
study, we found two potential binding sequences for 
N-Myc-activated microRNAs both in RUNX1 and 
RUNX3（Fig. 3）. When target protectors aR3miR19 
and aR3miR20 were combined, RUNX3 protein syn-
thesis was increased in an additive manner（Fig. 5）. 
On the other hand, such concerted regulations by 
multiple microRNAs hindered us to pin down relative 
contributions of one particular microRNA. Although 
we tried to block each microRNA by an antisense 
LNA inhibitor（Exiqon, Vedbaek, Denmark）, we failed 
to obtain reproducible data from functional analyses

（data not shown）. One possible explanation is that 
one 3’UTR target sequence binds to several microR-
NAs and the effect of a specific LNA inhibitor could 

Fig. 6
Target protection of N-Myc-activated microRNAs halted proliferation and induced differentiation in a neuroblastoma cell 
line. GFP plasmids with or without each target protector were delivered into the SK-N-FI neuroblastoma cell line by 
electroporation. 3 days later, the cellular morphology was observed by a fluorescence microscope. Scale bar：200 mm.
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be compensated by other microRNAs. So far, preced-
ing studies identified Myc-activated microRNAs 
which bind to 3’UTR of either RUNX1 or RUNX3. 
For example, Fontana et al. reported that miR-17, 
miR-20a and miR-106a inhibit AML1（RUNX1）pro-
tein synthesis in hematopoietic progenitors 7）and the 
binding sequence is the one we termed as R1miR20

（Fig. 3）. Another interesting example is that RUNX3 
is inhibited by N-Myc activated miR-4295 in glio-
ma 24）, of which the binding sequence is overlapping 
with our R3miR19（Fig. 3）. In addition, accumulating 
evidence reinforces the regulatory relationship 
between Myc-activated microRNAs and RUNX1

（miR-9 25～27）, miR-18a 28）and miR-181a 29））or RUNX3
（miR-20a 30）, miR-93 31）, miR-106a/b 32,33）and miR-
130a 34～37））. In the future, functional relationship 
between N-Myc and RUNX1/3 should be further 
investigated, given the fact that the opposite regula-
tion（i.e. RUNX3 accelerates protein degradation of 
N-Myc）was reported in neuroblastoma5）.

CONCLUSIONS

Neuroblastoma specific microRNAs inhibit protein 
syntheses of RUNX1 and RUNX3 through 3’UTR 
sequences. Both RUNX1 and RUNX3 3’UTR have 
two binding sequences for N-Myc-activated microR-
NAs. Target protection of each sequence increases 
protein synthesis of either RUNX1 or RUNX3, and 
induces differentiation in neuroblastoma cell lines.
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