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 2 

Short anterior chamber depth (ACD) is considered a risk factor of 1 

endothelial-cell loss after phacoemulsification. However, whether it is an 2 

independent risk factor or not remains controversial. We investigated the 3 

relationship between ascorbic acid (AA) concentrations in the aqueous humour 4 

(AqH) and ACD. We analysed 165 AqH samples of 97 patients (42 men and 55 5 

women) who underwent small incision cataract surgery. AqH and plasma AA 6 

concentrations were measured using a high-performance liquid chromatography 7 

- electrochemical detection method. Patient characteristics were compared 8 

between and within the sexes. As a result, age and ACD were significantly 9 

correlated with AqH AA concentrations (r = -0.206, P = 0.045; r = 0.339, P < 10 

0.001) only in women. Moreover, plasma AA concentrations were significantly 11 

correlated with AqH AA concentrations (r = 0.420, P < 0.001; r = 0.316, P = 12 

0.002) both in men and women. After adjusting for confounding factors (age and 13 

plasma AA concentrations), ACD was significantly and positively correlated with 14 

AqH AA concentrations (partial.r = 0.275, P = 0.009) only in women. In 15 

conclusion, AqH AA concentrations were reduced in women with smaller ACD. 16 

This may suggest that women with short ACD could be more susceptible to 17 

oxidative damage. 18 

 19 

 20 

 21 

 22 

 23 

 24 
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Introduction 1 

Ascorbic acid (AA) concentration in the human aqueous humour (AqH) is more 2 

than 20-fold higher than in the plasma1-3. There are various theories regarding 3 

the reasons why AqH AA concentration is high. First, it has been suggested that 4 

AA acts as an ultraviolet filter for internal eye structures because diurnal 5 

mammals have higher AqH AA concentrations than nocturnal mammals4. AA 6 

absorbs ultraviolet light of 310 nm or less and reduces fluorescence emission of 7 

ultraviolet A of 320 to 400 nm5,6. Second, AA controls the metabolism of the 8 

extracellular matrix of tissues that are in contact with the AqH because AA 9 

regulates the synthesis of various extracellular-matrix molecules such as 10 

collagen and elastin7,8. In addition, AA is considered a radical scavenger in the 11 

eye. Free radical species in vivo reacts with stable molecules such as nucleic 12 

acids, proteins, sugars, and lipids and promotes oxidisation, which results in 13 

various disease states. AA has strong reducing action and protects the cornea, 14 

crystalline lens, and other intraocular tissues from oxidative damage9-12. 15 

 Ultrasonic phacoemulsification for cataract surgery results in the formation of 16 

free radical species and causes injury in corneal endothelial cells13,14. In contrast, 17 

adding the antioxidant AA to the irrigation solution significantly reduces corneal 18 

endothelial-cell damage10,12. The risk of endothelial-cell loss after 19 

phacoemulsification depends on several preoperative and intraoperative 20 

parameters (high nucleus grade, advanced age, long phaco time, high 21 

ultrasound energy, short axial length, and surgical skill)15-18. Especially, Walkow 22 

et al.15 and Storr-Paulsen et al.16 reported that eyes with shorter axial length (AL) 23 

had significantly increased risk for endothelial-cell loss. Although the direct 24 
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relationship between anterior chamber depth (ACD) and endothelial-cell loss 1 

remains unclear, strong positive correlations between ACD and AL have been 2 

frequently reported19-21. Some researchers have considered that short ACD 3 

might be a risk factor for corneal endothelial-cell damage15,22,23. Short ACD leads 4 

to phacoemulsification being performed closer to the corneal endothelial cells 5 

and may therefore be associated with an increased risk of corneal 6 

endothelial-cell loss. However, to the best of our knowledge, no report has 7 

considered the association between ACD and AA concentrations in the AqH. We 8 

hypothesised that short ACD would be more susceptible to oxidative damage 9 

and that it would be associated with decrease in AqH AA concentration. 10 

Therefore, in this study, we examined the relationship between ACD and AqH AA 11 

concentrations in patients with cataract and examined whether the association 12 

between these two factors is affected by patient characteristics. 13 

 14 

Results 15 

Patient characteristics 16 

 Patient characteristics are presented in Table 1. Seventy eyes of 42 men and 17 

95 eyes of 55 women were included. ACD and AL were significantly shorter in 18 

women (3.34 ± 0.37 mm vs. 3.09 ± 0.42 mm; P < 0.001, 24.0 ± 1.3 mm vs. 23.5 19 

± 1.5 mm; P = 0.042, respectively). AqH AA concentrations were significantly 20 

lower in men (1535 ± 326 μmol/L vs. 1733 ± 355 μmol/L, respectively; P < 0.001), 21 

whereas there was no significant difference in plasma AA concentrations 22 

between the sexes (48.4 ± 18.1 μmol/L vs. 52.7 ± 15.9 μmol/L, respectively; P = 23 

0.105). 24 
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 1 

Correlation between AqH AA concentrations and patient characteristics 2 

 The sex-specific correlation coefficients between ACD and the characteristics 3 

of the patients are shown in Table 2. The AqH AA concentrations were 4 

significantly correlated with age (r = -0.206, P = 0.045), ACD (r = 0.339, P < 5 

0.001) and plasma AA concentrations (r = 0.316, P = 0.002) in women. The AqH 6 

AA concentrations were significantly correlated with plasma AA concentrations (r 7 

= 0.420, P < 0.001) in men. AqH AA was not significantly associated with nuclear 8 

sclerosis (NS), endothelial-cell density (ECD), AL, or central corneal thickness 9 

(CCT). 10 

 11 

Correlations between AL and AqH AA concentrations 12 

 Table 3 shows the sex-specific correlation coefficients between AL and AqH AA 13 

concentrations. There were no significant correlations between AL and the AqH 14 

AA concentrations in either men or women. 15 

 16 

Correlation between ACD and AqH AA concentrations 17 

 Table 4 shows the sex-specific correlation coefficients between ACD and AqH 18 

AA concentrations. In women, ACD was positively correlated with AqH AA 19 

concentrations (partial.r = 0.275, P = 0.009) after adjustment. There were no 20 

significant correlations in men (partial.r = 0.049, P = 0.700). 21 

 22 

Discussion 23 

 The present study showed that AqH AA concentrations were significantly and 24 
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positively correlated with ACD in women after adjusting for confounding factors 1 

(age and plasma AA concentrations). 2 

 The AA concentration in the corneal epithelium is the highest among all known 3 

tissue concentrations in the eye4,24,25. Since blood vessels are not distributed on 4 

the cornea, the cornea receives AA from the tears and the AqH11,24,25. In the 5 

present study, AA concentrations in the AqH were 1535 ± 326 μmol/L in men and 6 

1733 ± 355 μmol/L in women, at levels similar to those reported by a US study 7 

with patients with cataract (1410 ± 550 μmol/L in men and 1640 ± 580 μmol/L in 8 

women) 3. In contrast, Senthilkumari et al.1 reported that AqH AA concentrations 9 

were 1010 ± 469 μmol/L in men and 1138 ± 613 μmol/L in women with poor 10 

nutritional status in India. In this study, the plasma and AqH AA concentrations 11 

tended to be lower in men. Some studies have shown a similar trend1,3. Even 12 

considering the influence of dietary intake and preferences between the sexes, 13 

renal excretion is higher in men than in women26. Therefore, we speculate that 14 

the results were influenced by sex differences in excretion, absorption, and 15 

retention of AA. AA is considered to be actively transported from the blood 16 

through the ciliary body into the AqH27,28. However, the mean concentration ratio 17 

between AqH AA and plasma AA varied from 18 to 71 in previous studies1-3. Our 18 

study showed that the ratio was 32 in men and 33 in women. AqH AA 19 

concentrations reportedly have a positive correlation with plasma AA 20 

concentrations1-3. There was a positive correlation between plasma and AqH AA 21 

concentrations both in men (r = 0.420, P < 0.001) and in women (r = 0.316, P = 22 

0.002) in this study, in support of past reports. In addition, Čanadanović et al.29 23 

reported that AqH AA concentration decreases with age. Therefore, in order to 24 
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investigate the correlation between ACD and AqH AA concentrations, we 1 

adjusted for two confounding factors (age and plasma AA concentrations). 2 

 Several in vitro and in vivo studies have shown that AA scavenges free radicals 3 

in phacoemulsification and reduces corneal endothelial-cell damage12,13. This 4 

protective effect on corneal endothelial cells is attributable to AA directly 5 

eliminating free radicals generated in the AqH. Therefore, as 6 

phacoemulsification always replaces the anterior chamber with irrigating 7 

solutions, AqH AA concentrations before surgery may have little involvement in 8 

radical scavenging during surgery. However, since corneal endothelial cells have 9 

the ability to absorb AA30, AA may act as a protective factor against oxidative 10 

stress even intracellularly31. Yue et al.32 and Reddy et al.33 reported that AA 11 

might be an important factor in endothelial-cell healing, migration, and 12 

regeneration. Moreover, Biaggi et al.34 reported that after phacoemulsification in 13 

dogs, AqH AA concentrations were reduced until 15 days postoperatively. 14 

Consequently, in patients with low AA concentrations in the AqH, corneal 15 

endothelial cells may be affected by oxidative damage from early postoperatively 16 

and extending to the long term. Because this was a cross-sectional study, we 17 

could not demonstrate the accelerated reduction of corneal endothelial cells in 18 

relation to AqH AA concentrations; there is a need for a prospective longitudinal 19 

study on the effects of AqH AA concentrations on long-term corneal 20 

endothelial-cell loss after phacoemulsification. 21 

 In this study, no correlation was found between AL and AqH AA concentrations 22 

(partial.r = 0.032, P = 0.760), but in women there was a positive correlation 23 

between ACD and AqH AA concentrations (partial.r = 0.275, P = 0.009), which 24 
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remained even after adjusting for age and plasma AA concentrations. Therefore, 1 

the fact that AqH AA concentrations are lower in women with short ACD may 2 

suggest that corneal endothelial cells are more susceptible to postoperative 3 

oxidative damage. 4 

 There has been no report so far on the association between ACD and AqH AA 5 

concentrations. AqH AA concentrations could be low in women with short ACD 6 

due to low transportation capacity of AA into the AqH. Recently, Ma et al.35 7 

reported that in the human ciliary epithelium sodium-dependent AA transporter 8 

(SVCT) 2 is expressed only in the pigmented epithelium, and glucose 9 

transporter (GLUT) 1 is predominately expressed in the nonpigmented 10 

epithelium. This may explain why SVCT2 and GLUT1 are involved in the 11 

maintenance of higher AqH AA concentrations in humans. Further, Senthilkumari 12 

et al.1 reported that polymorphisms in the SVCT genes encoding SVCT1 and 13 

SVCT2 influenced AqH AA concentrations. Although the relationship between 14 

the ACD and SVCT genes needs to be confirmed in future studies, women with 15 

short ACD may have a genotype that lowers AqH AA concentrations. 16 

 A strength of this study was that AA was evaluated using high-performance 17 

liquid chromatography (HPLC)-electrochemical detection systems. 18 

HPLC-electrochemical detection systems have high sensitivity and specificity for 19 

AA analysis36. In humans, few studies on AqH AA concentrations have employed 20 

HPLC-electrochemical detection systems. 21 

 This study had some limitations. We did not measure dietary AA intake in the 22 

present study. Variation in dietary intake and the time interval between the 23 

collection of blood and AqH samples may have introduced bias. The time 24 
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interval between the collection of blood and AqH samples was approximately 1 1 

month or less. However, in both cases, we collected samples after the patients 2 

had fasted for at least 5 h in order to ensure uniformity in the collection 3 

conditions. Hence, dietary variation may have been negligible. Moreover, in this 4 

report, both AqH and plasma AA concentrations were at levels comparable to 5 

those reported by previous studies in Japanese, American, and European 6 

populations37-39. Further, patients receiving dialysis or with eating disorders, 7 

dementia, and systemic inflammatory diseases were excluded from this study; 8 

therefore, we did not include patients with conditions causing markedly-poor 9 

nutritional status. Another limitation of this study is that we could not determine 10 

whether short ACD directly caused decrease in AqH AA concentrations. The 11 

ACD is affected by other factors such as lens vault, zonular weakness, iris 12 

curvature, and iris thickness in addition to the AL19-21,40-43. Changes in the lens 13 

and the morphology of the iris may also affect AqH AA concentrations. Therefore, 14 

we plan to further investigate the relationship between lens vault, iris curvature, 15 

iris thickness, intraocular pressure (IOP), and AqH AA concentrations in the 16 

future. 17 

 In conclusion, there was a positive correlation between ACD and AqH AA 18 

concentrations in women, and AqH AA concentrations were lower in women with 19 

short ACD. This may suggest that women with short ACD have low reducing 20 

power in the AqH and could be more susceptible to oxidative damage. 21 

 22 

Methods 23 

This cross-sectional consecutive study was performed in accordance with the 24 
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Declaration of Helsinki. It was approved by the institutional ethics review board 1 

of Dokkyo University Hospital (I-15-51). Informed consent was obtained from all 2 

participants. 3 

 4 

Patients. A total of 223 consecutive patients who visited Dokkyo Medical 5 

Hospital and other associated hospitals to undergo small incision cataract 6 

surgery from April 2017 to January 2018 were recruited. Patients with inherited 7 

cataract or trauma-related cataract, prior intraocular surgeries, prior laser 8 

treatment, congenital eye disease, corneal disease, acute infection, uveitis, 9 

acute angle closure glaucoma, primary angle closure glaucoma, primary open 10 

angle glaucoma, retinal disease, exfoliation syndrome, renal failure, eating 11 

disorders, dementia, and inflammatory systemic diseases were excluded from 12 

the study, as were those from whom we could not obtain more than 50 μL of 13 

AqH due to a shallow anterior chamber. Ultimately, 165 eyes of 97 patients were 14 

included. The included patients had normal IOP (defined as lower than 21 mm 15 

Hg) and were not using any topical or internal intraocular tension depressors. 16 

Moreover, we did not use capsule stabilisation devices or   intraocular lens 17 

scleral suture fixation in the patients. The patient selection procedure and 18 

distribution of the study population are shown in Figure 1. 19 

 20 

Clinical examination. All subjects underwent a thorough ophthalmic evaluation 21 

before cataract surgery. Uncorrected visual acuity (UCVA) and best-corrected 22 

visual acuity (BCVA) were tested with Landolt C charts. IOP was measured with 23 

a non-contact tonometer (TONOREFII; Nidek Corp, Gamagori, Japan). Lens NS 24 
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was graded with a slit lamp using the Emery-Little classification with scores 1 

ranging from 1 to 5. Corneal ECD was measured using specular microscopy 2 

(Nonconrobo FA-3509; Konan Medical, Hyogo, Japan). AL, ACD, and CCT were 3 

obtained using partial optical coherence interferometry (IOLMaster; Carl Zeiss 4 

Meditec AG, Jena, Germany). 5 

 6 

AqH and blood samples. The sampling of AqH was performed by the surgeon 7 

who performed the cataract surgery. Patients undergoing surgery in both eyes 8 

may select a 5- or 7-day interval between the operations. The AqH was obtained 9 

under sterile conditions at the beginning of surgery after topical anaesthesia. 10 

First, the AqH was obtained by directly puncturing the corneal limbus with a 11 

30-gauge needle attached to a disposable tuberculin syringe without touching 12 

the iris, lens, or corneal endothelium. An AqH sample of at least 50 μL was 13 

obtained from the periphery of the anterior chamber. Immediately after collection, 14 

the AqH was frozen at -20°C using a cooling system (Corning® CoolBox™ M30 15 

System; Corning, NY, USA) and transferred to the laboratory. The AqH samples 16 

were added to cold 10% metaphosphoric acid (MPA) and centrifuged at 15000 17 

rpm for 15 min at 4°C. The 50-μL samples were collected and stored at -80℃ 18 

until AA could be measured. The blood samples were drawn into collection tubes 19 

(Terumo Corporation, Tokyo, Japan) containing ethylenediaminetetraacetic acid 20 

(EDTA)-2Na as anticoagulant and centrifuged at 3000 rpm for 10 min at 4°C. 21 

After centrifugation, 500-μL plasma was added at the exact same volume of cold 22 

10% MPA and centrifuged at 15000 rpm for 15 min at 4°C. Then, the 500-μL 23 

supernatant was stored at -80℃ until use. Both AqH and blood samples were 24 



 12 

collected at least 5 h after the last meal. 1 

 2 

Determination of AA. AA was analysed using an HPLC-electrochemical 3 

detection method. The samples were treated as previously reported36. Detection 4 

was performed with a Waters 2695 separations module coupled with a Waters 5 

2465 electrochemical detector (Nihon Waters, Tokyo, Japan). After thawing, the 6 

samples were reduced with 35 mM tris (2-carboxyethyl) phosphine 7 

hydrochloride for 2 h on ice. After reduction, the reaction mixture was analysed 8 

for total AA with an HPLC-electrochemical detection method. Separation was 9 

performed on an Atlantis dC18 5-μm column (4.6 × 150 mm) combined with an 10 

Atlantis dC18 5-μm guard column (4.6 × 20 mm) (Nihon Waters, Tokyo, Japan). 11 

The mobile phase comprised 50 mM phosphate buffer (pH 2.8), 540 μM EDTA, 12 

and 2% methanol. The flow rate was 1.3 mL/min, and electrical signals were 13 

recorded using an electrochemical detector with a glassy carbon electrode at 14 

+0.6 V. Representative HPLC-electrochemical detection chromatograms are 15 

shown in Figure 2. 16 

 17 

Statistical analyses. Statistical analyses were performed using software (SPSS 18 

24.0; IBM Corp., Armonk, NY, USA). The data are expressed as mean ± SD. A P 19 

value less than 0.05 was considered statistically significant. The normality of 20 

data distribution was tested with histograms and the Shapiro-Wilk test. 21 

Categorical data were assessed using the Mann-Whitney U test, and continuous 22 

variables were assessed using independent Student’s t-tests. Pearson’s 23 

correlation coefficient was calculated for normally-distributed data. If the data 24 
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distribution was not normal, Spearman correlation analyses were used. To 1 

examine the relationship between ACD and AqH AA concentration, partial 2 

correlation coefficients were calculated for statistical adjustment of covariates 3 

(age and plasma AA concentration). 4 

 5 

Data Availability Statement 6 

The corresponding author had full access to all the data in the study and all 7 

authors shared final responsibility for the decision to submit for publication. 8 
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Figure 1. Patients with inherited cataract or trauma-related cataract, prior 11 

intraocular surgeries, prior laser treatment, congenital eye disease, corneal 12 

disease, acute infection, uveitis, acute angle closure glaucoma, primary angle 13 

closure glaucoma, primary open angle glaucoma, retinal disease, exfoliation 14 

syndrome, renal failure, eating disorders, dementia, and inflammatory systemic 15 

diseases were excluded from the study, as were those from whom we could not 16 

obtain more than 50 μL of AqH due to a shallow anterior chamber. Ultimately, 17 

165 eyes of 97 patients were included. 18 
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Figure 2. Representative high-performance liquid chromatography 12 

-electrochemical detection chromatograms of AA, metaphosphoric acid (MPA)/ 13 

ethylenediaminetetraacetic acid (EDTA), and tris (2-carboxyethyl) phosphine 14 

hydrochloride (TCEP). (a) AA standard solution (5.7μM) in 5% MPA/EDTA 15 

reduced by 35mM TCEP. (B) 5% MPA/EDTA. (C) Aqueous humour sample in 16 

5% MPA/EDTA reduced by 35mM TCEP for 2h on ice. 17 
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Parameter  

Men Women  

n = 42 n = 55 p-value 

No. of eyes 70 95  
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Table 1. Patient characteristics by sex. Data in columns are mean ± SD. UCVA, 1 

uncorrected visual acuity; BCVA, best-corrected visual acuity; IOP, intraocular 2 

pressure; NS, nuclear sclerosis; ECD, endothelial-cell density; ACD, anterior 3 

chamber depth; AL, axial length; CCT, central corneal thickness; AqH, aqueous 4 

humour; AA, ascorbic acid * Student’s t-tests. †Mann-Whitney U test. 5 

 6 

 7 

 8 

 9 

 10 

Age (years) 74.4 ± 7.7 75.6 ± 8.3 0.363* 

UCVA (logMAR) 0.69 ± 0.45 0.71 ± 0.47 0.814* 

BCVA (logMAR) 0.33 ± 0.40 0.34 ± 0.37 0.832* 

IOP (mmHg) 12.7 ± 3.1 13.4 ± 2.8 0.163* 

NS (Emery-Little classification) 2.4 ± 0.7 2.3 ± 0.9 0.371† 

ECD (cells/mm2) 2624 ± 325 2549 ± 317 0.138* 

ACD (mm) 3.34 ± 0.37 3.09 ± 0.42 < 0.001* 

AL (mm) 24.0 ± 1.3 23.5 ± 1.5 0.042* 

CCT (μm) 530 ± 53 529 ± 29 0.836* 

AqH AA concentrations (μmol/L)  1535 ± 326 1733 ± 355 < 0.001* 

Plasma AA concentrations (μmol/L)  48.4 ± 18.1 52.7 ± 15.9 0.105* 
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Table 2. Correlation between AqH AA concentrations and patient characteristics. 1 

UCVA, uncorrected visual acuity; BCVA, best-corrected visual acuity; IOP, 2 

intraocular pressure; NS, nuclear sclerosis; ECD, endothelial-cell density; ACD, 3 

anterior chamber depth; AL, axial length; CCT, central corneal thickness; AA, 4 

ascorbic acid; r, correlation coefficient. *Pearson’s correlation coefficient. 5 

†Spearman’s correlation coefficient. 6 
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 10 

 11 

 12 

 

Factor 

Men Women 

r  p-value r p-value 

Age -0.096 0.429* -0.206 0.045* 

UCVA 0.046 0.707* 0.004 0.972* 

BCVA 0.173 0.151* -0.065 0.530* 

IOP -0.230 0.055* -0.095 0.361* 

NS -0.027 0.821† -0.144 0.164† 

ECD 0.058 0.635* 0.048 0.647* 

ACD  -0.043 0.728* 0.339 < 0.001* 

AL  0.045 0.714* 0.151 0.144* 

CCT  -0.093 0.287* 0.150 0.153* 

Plasma AA concentrations  0.420 < 0.001* 0.316 0.002* 
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 1 

Table 3. Correlation between AL and AqH AA concentrations. AL, axial length; 2 

AqH, aqueous humour; AA, ascorbic acid; rp, Pearson’s correlation coefficient. * 3 

Age and plasma AA concentration-adjusted Pearson’s correlation coefficient 4 

between AL and AqH AA concentrations. 5 
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 Men Women 

 rP  p-value partial.r* p-value rP  p-value partial.r* p-value 

AqH AA concentrations 0.045 0.714 0.082 0.508 0.151 0.144 0.032 0.760 
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 1 

Table 4. Correlation between ACD and AqH AA concentrations. ACD, anterior 2 

chamber depth; AqH, aqueous humour; AA, ascorbic acid; rp, Pearson’s 3 

correlation coefficient. * Age and plasma AA concentration-adjusted Pearson’s 4 

correlation coefficient between ACD and AqH AA concentrations. 5 

 6 

 Men Women 

 rP  p-value partial.r* p-value rP  p-value partial.r* p-value 

AqH AA concentrations -0.043 0.728 0.049 0.700 0.339 < 0.001 0.275 0.009 


