1	Comparisons of Photopic Negative Responses Elicited by
2	Different Conditions from Glaucomatous Eyes
3	
4	Authors: Yuji Hara, Shigeki Machida, Satoshi Ebihara, Masahiko Ishizuka, Atushi Tada,
5	Tomoharu Nishimura
6	
7	Affiliation: Department of Ophthalmology, Dokkyo Medical University Saitama Medical
8	Center, 2-1-50 Minamikoshiagya, Koshigaya, Saitama, 343-8555, JAPAN
9	
10	Corresponding author: Shigeki Machida, MD, PhD
11	Department of Ophthalmology, Dokkyo Medical University Saitama Medical Center
12	2-1-50 Minamikoshiagya, Koshigaya, Saitama, 343-8555, JAPAN
13	E-mail: <u>machidas@dokkyomed.ac.jp</u>
14	Tel: +81 48 965 1111
15	Fax: +81 48 965 1127
16	
17	Running title: PhNR obtained by different recording conditions in OAG
18	Figures: 6

19 <u>Tables:</u>3

20 **Words:** 3,839

21 Acknowledgements/Disclosures

- 22 Funding/Support: This study was supported by JSPS KAKENHI Grant Number
- 23 18K09420 (SM). We thank to Dr. Duco Hamasaki for editing the manuscript.
- 24 Financial Disclosure: none
- 25 Competing Interest: none declared.

ABSTRACT

28	Purpose: To compare the clinical significance of the photopic negative response
29	(PhNRs) elicited by different stimuli from glaucomatous eyes.
30	Methods: Eighty-four eyes of 84 patients with open angle glaucoma (OAG) and 40
31	eyes of 40 normal subjects were studied. Cone electroretinograms (ERGs) were elicited
32	by white stimuli on a white background (W/W) or red stimuli on a blue background
33	(R/B). The luminance of the stimuli was 0.5, 1.0, 2.0 or 3.0 cd-s/m², and that of the
34	background light was 10 cd/m ² . The first and second troughs of the ERGs that appeared
35	following the b-wave were designated as PhNR1 and PhNR2, respectively. The
36	thickness of the circumpapillary retinal nerve fiber layer (cpRNFL) was measured by
37	spectral-domain optical coherence tomography. The mean deviation (MD) was
38	determined by standard automated perimetry. The area under the receiver operating
39	characteristic curves (AUCs) were created to determine the diagnostic ability of the
40	PhNRs elicited by the different stimulus conditions.
41	Results: The correlation coefficients of the amplitudes of the PhNR1 elicited by W/W
42	stimuli to the MDs and cpRNFL thickness were generally stronger, and the regression
43	lines were steeper than that for the amplitudes of the PhNR1 elicited by R/B stimuli. In
44	contrast, the correlation coefficients of the amplitudes of the PhNR2 elicited by R/B

45	stimuli to the MDs and cpRNFL thickness were generally stronger, and the regression
46	lines were steeper than the amplitudes of the PhNR2 elicited by W/W stimuli. With both
47	types of stimuli, the slopes of the regression lines became steeper when the ERG
48	recorded with higher stimulus intensities. The AUCs were significantly larger for the
49	PhNR2 elicited by the R/B stimuli at 3.0 cd-s/m² than for PhNR1 and PhNR2 elicited by
50	W/W stimuli at the same intensity when the PhNRs were used for diagnosing advanced
51	glaucoma.
52	Conclusion: The PhNR1 and PhNR2 elicited by the W/W and R/B stimuli are suitable
53	measures to assess the function of the RGCs in eyes with OAG. The PhNR2 elicited by
54	R/B stimuli at higher stimulus intensities is most effective in detecting functional and
55	structural changes of the RGCs with the highest diagnostic ability in discriminating
56	advanced glaucoma.
57	

58 <u>Key words:</u> photopic negative response, retinal ganglion cell, glaucoma, cone ERG,
 59 cone

60 INTRODUCTION

61	Full-field cone electroretinograms (cone ERGs) have been used to evaluate the cone-
62	driven functions in the retina of animals and patients. The photopic negative response
63	(PhNR) of the cone ERGs originates from the activities of the retinal ganglion cells
64	(RGCs) and their axons [1, 2]. Thus, the PhNRs have been used to evaluate the
65	function of the RGCs in patients with glaucoma [3-8], optic nerve diseases [9-16],
66	ischemic retinal diseases [17-19], and surgical insults [20-23].
67	
68	Viswanathan et al used monochromatic red stimuli on a monochromatic blue background
69	(R/B) produced by light-emitting diodes (LEDs) to elicit the PhNRs. They found that the
70	PhNRs originated from the spiking RGCs and their axons in monkeys [1, 2]. Rangaswamy
71	et al demonstrated that the pharmacologically-isolated responses driven by the RGCs
72	were more dominant in the cone ERGs elicited by R/B stimuli than with white stimuli on a
73	white background (W/W) in monkey eyes when low and middle intensities stimuli were
74	used [24]. This suggested that larger PhNRs can be elicited by R/B stimuli than by the
75	W/W in a selected range of stimulus intensities. However, broadband R/B stimuli
76	produced by xenon flashes using color filters has been reported to not bring about this
77	benefit [25].

79	The International Society for Clinical Electrophysiology and Vision (ISCEV) Standard
80	has recommended that the cone ERGs should be elicited by W/W stimuli [26]. Recently,
81	the ISCEV published an extended protocol for the PhNR in which R/B stimuli were
82	recommended to elicit the PhNRs [27]. There have been at least two studies that
83	compared the clinical significance of the PhNR recorded under different stimulus
84	conditions from normal and diseased eyes [5, 8]. Sustar et al and Barejee et al
85	compared the diagnostic ability of the PhNR elicited by R/B to those elicited by W/W
86	stimuli in discriminating eyes with open-angle glaucoma (OAG) from normal eyes. They
87	found that the PhNRs elicited by R/B stimuli had higher sensitivity and better specificity
88	than the PhNRs elicited by W/W stimuli in discriminating OAG. The amplitudes of the
89	PhNRs elicited by R/B were more strongly correlated with the visual field defects and
90	OCT findings. In both studies, the PhNR amplitudes were measured as the trough after
91	the i-wave [28]. However, in some reports, the PhNR amplitude was measured as the
92	trough before the i-wave when the cone ERGs were elicited by W/W stimuli because the
93	PhNRs were more prominent before the i-wave under this stimulus combination [9, 11,
94	17, 18, 20]. In addition, the clinical significance of the PhNRs elicited by a single
95	stimulus intensity has been evaluated [5, 8]. These earlier findings indicated that the

96	techniques of eliciting and measuring the PhNRs can affect the amplitudes of the
97	PhNRs. However, the most effective techniques have not been definitively determined.
98	
99	Thus, the aims of this study were twofold; first, to compare the clinical significance of
100	the PhNRs elicited by W/W to those elicited by R/B stimuli of different intensities in eyes
101	with OAG; and second, to determine a suitable method for measuring the PhNR elicited
102	by the two stimulus conditions.
103	
104	METHODS
105	Patients
105 106	Patients Eighty-four eyes of 84 patients with open angle glaucoma (OAG) were studied. The
105 106 107	Patients Eighty-four eyes of 84 patients with open angle glaucoma (OAG) were studied. The patients were being treated in the Glaucoma Unit of the Dokkyo Medical University
105 106 107 108	Patients Eighty-four eyes of 84 patients with open angle glaucoma (OAG) were studied. The patients were being treated in the Glaucoma Unit of the Dokkyo Medical University Saitama Medical Center, and their ages ranged from 32 to 89 years with a mean ±
105 106 107 108 109	Patients Eighty-four eyes of 84 patients with open angle glaucoma (OAG) were studied. The patients were being treated in the Glaucoma Unit of the Dokkyo Medical University Saitama Medical Center, and their ages ranged from 32 to 89 years with a mean ± standard deviation of 73.8 ± 9.28 years. The diagnosis of OAG was based on the
105 106 107 108 109 110	Patients Eighty-four eyes of 84 patients with open angle glaucoma (OAG) were studied. The patients were being treated in the Glaucoma Unit of the Dokkyo Medical University Saitama Medical Center, and their ages ranged from 32 to 89 years with a mean ± standard deviation of 73.8 ± 9.28 years. The diagnosis of OAG was based on the presence of a glaucomatous optic disc associated with visual field defects measured by
105 106 107 108 109 110 111	PatientsEighty-four eyes of 84 patients with open angle glaucoma (OAG) were studied. Thepatients were being treated in the Glaucoma Unit of the Dokkyo Medical UniversitySaitama Medical Center, and their ages ranged from 32 to 89 years with a mean ±standard deviation of 73.8 ± 9.28 years. The diagnosis of OAG was based on thepresence of a glaucomatous optic disc associated with visual field defects measured bystatic visual field perimetry. According to the diagnostic criterion for minimal abnormality
 105 106 107 108 109 110 111 112 	PatientsEighty-four eyes of 84 patients with open angle glaucoma (OAG) were studied. Thepatients were being treated in the Glaucoma Unit of the Dokkyo Medical UniversitySaitama Medical Center, and their ages ranged from 32 to 89 years with a mean ±standard deviation of 73.8 ± 9.28 years. The diagnosis of OAG was based on thepresence of a glaucomatous optic disc associated with visual field defects measured bystatic visual field perimetry. According to the diagnostic criterion for minimal abnormalityin the visual field [30], the visual field defect was determined to be glaucomatous when

114	more non-edge points that had sensitivities lower sensitivity than that in 5% of the
115	normal population (P < 0.05) and one of the points had a sensitivity that was lower than
116	1% of population ($P < 0.01$); 2, the value of the corrected pattern standard deviation was
117	lower than that of 5% of the normal visual field (<i>P</i> <0.05); and 3, the Glaucoma Hemifield
118	Test indicated that the field was outside the normal limits. In all glaucomatous eyes, the
119	intraocular pressure was controlled under 21 mmHg by means of anti-glaucoma eye
120	drops at the time of the ERG recordings. We included eyes with worse visual field
121	defects in patients with bilateral OAG for analysis in this study.
122	
123	Forty eyes of 40 normal volunteers, ranging in age from 31 to 81 years with a mean of
124	62.0 ± 13.1 years were also studied.
125	
126	This research was conducted in accordance with the Institutional Guidelines of Dokkyo
127	Medical University, and the procedures conformed to the tenets of the Declaration of
128	Helsinki. An informed consent was obtained from all subjects after a full explanation of
129	the nature of the experiments.
130	

131 Recording Cone ERGs

132	The pupils were dilated to approximately 8 mm in diameter by topical 0.5% tropicamide
133	and 0.5% phenylephrine HCI. The electrical signals were picked-up by a Burian-Allen
134	bipolar contact lens electrode (Hansen Ophthalmic Laboratories, Iowa City, IA, USA). A
135	chlorided silver electrode was placed on the left ear lobe as the ground electrode.
136	
137	The stimuli and background lights were presented in a ganzfeld dome, and the stimulus
138	and recording systems of the UTAS Visual Testing System with SunBurst Ganzfeld
139	(LKC Technologies, Inc., Gaithersburg, MD, USA) were used. The cone ERGs were
140	elicited by red stimuli (λ_{max} = 627 nm, half-amplitude bandwidth = 20 nm) on a blue
141	background (λ_{max} = 470 nm, half-amplitude bandwidth = 25 nm). The responses were
142	digitally bandpass filtered from 0.5 to 500 Hz, and 15 to 30 response were averaged
143	with an inter-stimulus interval of 1 second. The cone ERGs were elicited by either R/B
144	or W/W stimuli which were photopically matched by measuring intensities of the stimuli
145	and background lights with a photometer (IL1700, International Light Technologies, Inc.
146	Peabody, MA, USA). The stimulus and background lights were produced by LEDs. The
147	intensity of the stimuli was photopically matched to 0.5, 1.0, 2.0, or 3.0 photopic cd-
148	s/m². The intensity of the background light was photopically matched to 10 photopic
149	cd/m ² which is the intensity recommended by the ISCEV extended protocol for the

150 PhNR [27]. The duration of the stimulus was 2 msec.

152	The b-wave amplitude was measured from the first trough to the peak of the following
153	positive wave (Figure 1A). The i-wave was defined as the first positive wave after the b-
154	wave [28]. The amplitudes of the PhNR1 and PhNR2 were measured from the baseline
155	to the troughs just before and after the i-wave, respectively. The implicit times of the
156	PhNR1 and PhNR2 were measure from the stimulus light onset to the troughs of each
157	wave recorded with stimulus intensity of 3.0 cd-s/m ² in normal subjects. Since deflection
158	of the baseline by blinking strongly affects the configuration of the PhNR, we discarded
159	recordings with baseline deflections.
160	
161	Optical Coherence Tomography (OCT)
162	The circumpapillary retinal nerve fiber layer (cpRNFL) thickness was measured at 512 $ imes$
163	128 points around the optic nerve head using circular scans of 1.73 mm in radius by
164	spectral-domain OCT (SD-OCT, RS-3000 Advance, Nidek Co. LTD, Gamagori, Aichi,
1.65	
165	Japan). The averaged cpRNFL thickness was used for the statistical analyses. We only
165 166	Japan). The averaged cpRNFL thickness was used for the statistical analyses. We only included OCT images with good quality in this study.

168 Visual field analysis

169 The Humphrey Visual Field Analyzer (Model 750, Humphrey Instruments, San Leandro, 170 CA, USA) was used for the static visual field analysis. The SITA Standard strategy was 171 applied to program 30-2. The mean deviation (MD) was defined as the mean of the 172 differences between the measured sensitivity and normal values of age-matched 173 controls. The MD represents the diffuse depression of sensitivity of the visual field. From the MD, we classified patients with glaucomatous visual fields into three groups; early 174 175 $(MD > -6 dB, n = 34, -2.42 \pm 1.78 dB), moderate (-6 dB \ge MD \ge -12 dB, n = 22; -8.40 \pm 1.00 dB)$ 1.76 dB), and advanced (MD < -12 dB, n = 26, -18.5 \pm 5.57 dB) defect of the visual field. 176 When the fixation loss rate is higher than 20%, the field examination was determined to 177 178 be unreliable and excluded from the analysis. In addition, when the false-positive or 179 false-negative error rates exceeded 33%, the visual field was not used for the analysis. 180

181 Statistical Analyses

Two-way repeated measure ANOVA was used to compare the intensity-response
function of the amplitudes of the PhNR elicited by the R/B and the W/W stimuli in
normal subjects and patients with glaucoma. In addition, post hoc tests were performed
following the ANOVA to determine the statistical significance between paired data at

186	each stimulus intensity. Pearson's coefficients of correlation were calculated to
187	determine the strength of the correlation between the amplitude of PhNR1 and PhNR2
188	and the cpRNFL thickness or the MD. Analysis of covariance (ANCOVA) was performed
189	to determine whether the differences in the slopes of the regression lines were
190	significant. The receiver operating characteristic (ROC) curves and the area under the
191	ROC curves (AUC) were used to describe the diagnostic ability of the PhNR
192	measurements. These analyses were performed using Prism 5.1(GraphPad Software
193	Inc, San Diego, CA, USA) and $MedCalc^{\mathbb{R}}$ v18.11 (MedCalc Software bvba, Ostend,
194	Belgium). The level of statistical significance was set at P <0.05.
195	
196	Ten eyes of 10 normal controls were tested by the ERG twice to evaluate the within-
197	subject variability. The coefficient of variation (CV = standard deviation/mean x 100) was
198	calculated for the PhNR amplitudes.
199	
200	RESULTS
201	Representative cone ERGs elicited by white-on-white (W/W) and red-on-blue (R/B)
202	stimuli
203	Representative cone ERGs recorded from a normal subject and a patient with advanced

204	glaucoma elicited by W/W and R/B stimuli are shown in Figure 1B. In the cone ERGs
205	elicited by the W/W stimuli from the normal subject, the amplitudes of the PhNR1 were
206	larger than that of the PhNR2 for all stimulus intensities. On the other hand, the
207	amplitudes of the PhNR2 elicited by the R/B stimuli were larger than the PhNR1
208	especially at the higher stimulus intensities.
209	
210	In the glaucomatous eye, the amplitudes of both PhNR1 and PhNR2 were considerably
211	smaller for both the W/W and R/B stimuli. The peaks of the troughs of the PhNR1
212	elicited by the R/B and the W/W stimuli were above the baseline.
213	
213 214	Intensity-response functions of PhNR1 and PhNR2 elicited by W/W and R/B
213214215	Intensity-response functions of PhNR1 and PhNR2 elicited by W/W and R/B stimuli in normal and glaucomatous eyes
213214215216	Intensity-response functions of PhNR1 and PhNR2 elicited by W/W and R/B stimuli in normal and glaucomatous eyes The amplitudes of the PhNR1 and PhNR2 recorded from normal subjects and glaucoma
 213 214 215 216 217 	Intensity-response functions of PhNR1 and PhNR2 elicited by W/W and R/B stimuli in normal and glaucomatous eyes The amplitudes of the PhNR1 and PhNR2 recorded from normal subjects and glaucoma patients are plotted as a function of the stimulus intensities of the W/W (Figure 2A and
 213 214 215 216 217 218 	Intensity-response functions of PhNR1 and PhNR2 elicited by W/W and R/B stimuli in normal and glaucomatous eyes The amplitudes of the PhNR1 and PhNR2 recorded from normal subjects and glaucoma patients are plotted as a function of the stimulus intensities of the W/W (Figure 2A and B) and R/B stimuli (Figure 2C and D) (A and C = PhNR1; B and D= PhNR2).
 213 214 215 216 217 218 219 	Intensity-response functions of PhNR1 and PhNR2 elicited by W/W and R/B stimuli in normal and glaucomatous eyes The amplitudes of the PhNR1 and PhNR2 recorded from normal subjects and glaucoma patients are plotted as a function of the stimulus intensities of the W/W (Figure 2A and B) and R/B stimuli (Figure 2C and D) (A and C = PhNR1; B and D= PhNR2).
 213 214 215 216 217 218 219 220 	Intensity-response functions of PhNR1 and PhNR2 elicited by W/W and R/B stimuli in normal and glaucomatous eyes The amplitudes of the PhNR1 and PhNR2 recorded from normal subjects and glaucoma patients are plotted as a function of the stimulus intensities of the W/W (Figure 2A and B) and R/B stimuli (Figure 2C and D) (A and C = PhNR1; B and D= PhNR2). With the W/W stimuli, the amplitudes of PhNR1 and PhNR2 increased significantly as

222	On the other hand, the PhNR1 and PhNR2 amplitudes remained unchanged despite the
223	increase of the stimulus intensities in the glaucomatous eyes. As a result, the difference
224	in the PhNR amplitudes between the normal and glaucomatous eyes became more
225	prominent at the higher stimulus intensities.
226	
227	The amplitudes of PhNR1 elicited by R/B stimuli remained unchanged over all stimulus
228	intensities while the amplitudes of PhNR2 significantly increased with increasing
229	stimulus intensities in normal eyes (<i>P</i> <0.05, Figure 2C and 2D). The implicit times of
230	the i-wave were faster for the R/B than for the W/W (51.2 \pm 2.6 vs 53.1 \pm 2.6 msec at
231	3.0 cd-s/m ²). Since the i-wave counteracts the PhNR, the fast i-wave more affects the
232	PhNR1 rather than the PhNR2 amplitude, which probably prevents growth of the R/B-
233	elicited PhNR1 amplitude with increasing stimulus intensities. In the glaucomatous
234	eyes, the PhNR1 and PhNR2 amplitudes remained unchanged despite increasing
235	stimulus intensities.
236	
237	Correlations between PhNR amplitudes and mean deviations (MD) of visual fields
238	The correlations between the amplitudes of PhNR1 and the MDs obtained by static

visual field perimetry are shown in Figure 3. The amplitudes of the PhNRs elicited by

240	the R/B stimuli are shown in the left column and those elicited by W/W stimuli in the
241	right column. The PhNR1 were elicited by 0.5 (Figure 3A and B), 1.0 (Figure 3C and D),
242	2.0 (Figure 3E and F), and 3.0 cd-s/m ² (Figure 3G and H). The correlation coefficients
243	and slopes of the regression lines are presented in Table 1.
244	
245	The amplitudes of the PhNR1 elicited by both the R/B and W/W stimuli were
246	significantly smaller in eyes with a reduced MD at all intensities ($P < 0.0005$; Figure 3).
247	The correlation coefficients between the amplitudes of the PhNR1 and the MD were
248	generally higher for the PhNR1 elicited by W/W stimuli than those elicited by the R/B
249	stimuli except for stimulus intensity of 2.0 cd-s/m ² (Table 1).
250	
251	The slopes of the regression lines representing the correlation between the PhNR
252	amplitude and MD were compared when the ERG was elicited by different stimulus
253	intensities (Table 1). With an increase of the stimulus intensity, the slopes of the
254	regression lines became steeper for both stimulus conditions (Figure 3, Table 1). For the
255	PhNR1 elicited by R/B stimuli, a significant difference was found in the slopes between
256	0.5 and 3.0 cd-s/m ² (P < 0.05). Although there was no significant difference in the slopes
257	between the R/B and W/W at each stimulus intensity, and the slopes for the amplitudes

of the PhNR1 elicited by the W/W stimuli were always steeper than those for the PhNR2
elicited by the R/B stimuli.

260

261	The amplitudes of PhNR2 are plotted against the MDs in Figure 4, and calculations of
262	the relationship showed that there was a significant correlation between these two
263	parameters (Table 1). The correlation coefficients were generally better for the PhNR2
264	elicited by the R/B stimuli than for the W/W stimuli except for the stimulus intensity of
265	1.0 cd-s/m ² .
266	
267	With an increase in the stimulus intensity, the slopes of the regression lines became
268	steeper for the PhNRs elicited by both the R/B and W/W stimuli (Figure 4, Table 1). For
269	the PhNR2 elicited by the R/B stimuli, a significant difference was found in the slopes
270	between 0.5 and 2.0 and 0.5 and 3.0 cd-s/m ² (P <0.05). Although there was no
271	significant difference in the slopes between the PhNRs elicited by R/B and W/W stimuli,
272	the slopes for the R/B were always steeper than those for the responses elicited by the
273	W/W stimuli. Note that the slopes were 0.82 for the R/B PhNR2 and 0.50 for the W/W $$
274	PhNR2 at 3.0 cd-s/m ² .

276	Correlations between amp	litudes of PhNR and thickness of cpRNFL

277	A plot of the amplitudes of PhNR1 as a function of the cpRNFL is shown for the PhNR1
278	elicited by R/B stimuli in the left column and by the W/W stimuli in the right column of
279	Figure 5. The PhNR1 amplitudes were elicited by 0.5 (Figure 5A and 5B), 1.0 (Figure
280	5C and D), 2.0 (Figure 5E and F), and 3.0 cd-s/m ² (Figure 5G and H). The correlation
281	coefficients and slopes of regression lines are presented in Table 2.
282	
283	The PhNR1 amplitudes elicited by both the R/B and W/W stimulus intensities decreased
284	significantly with a decrease in the cpRNFL thickness ($P < 0.0005$; Figure 5). The
285	correlation coefficients were larger for the W/W-elicited than for the R/B-elicited PhNR1
286	except for the stimulus intensity of 1.0 cd-s/m ² (Table 2).
287	
288	The slopes of the regression lines representing the correlation between the PhNR
289	amplitude and cpRNFL thickness were compared when the ERG was elicited by
290	different stimulus intensities (Table 2). The slopes became steeper with an increase of
291	the stimulus intensities for both stimulating conditions (Figure 5, Table 2). The slopes for
292	the W/W were always steeper than those for the R/B over all stimulus intensities but the
293	difference was not significant.

295	The amplitudes of the PhNR2 are plotted against the cpRNFL thickness in Figure 6.
296	There was a significant correlation between these two parameters (Table 2). The
297	correlation coefficients were always better for the PhNR2 elicited by the R/B stimuli than
298	with the W/W stimuli. With an increase of the stimulus intensities, the slopes of the
299	regression lines became steeper for both recording conditions (Figure 6, Table 2).
300	Although there was no significant difference in the slopes between the R/B and W/W,
301	the slopes for the PhNR elicited by the R/B stimuli were always steeper than those for
302	the W/W. The steepest slope was obtained for the R/B PhNR2 at 3.0 cd-s/m^2 , which is
303	nearly twice larger than that at 0.5 cd-s/m ² (0.28 vs 0.16).
304	
305	ROC curves
306	To determine the diagnostic capability of the PhNR1 and PhNR2 elicited by the R/B and
307	W/W stimuli in discriminating OAG from normal eyes, ROC curves were constructed for
308	each stimulus condition. When the AUCs were calculated for all patients, they ranged
309	from 0.78-0.81 for the R/B-elicited PhNR1, 0.78-0.82 for the W/W-elicited PhNR1, 0.77-
310	0.83 for the R/B-elicited PhNR2, and 0.77-0.81 for the W/W-elicited PhNR2. There were
311	no significant differences in the AUCs between the R/B- and W/W-elicited PhNR1 and

312 PhNR2 or between the stimulus intensities.

314	We have reported that the R/B PhNR2 of the full-field cone ERGs elicited by stimuli with
315	high intensity and short duration had high sensitivity and specificity to discriminate eyes
316	with advanced glaucoma from normal eyes [6]. Therefore, the AUCs were obtained for
317	eyes with advanced glaucoma and compared between the R/B-elicited and W/W-
318	elicited PhNRs and between the stimulus intensities (Figure 7, Table 3). The highest
319	AUC (0.94) was observed for the R/B-elicited PhNR2 at 3.0 cd-s/m ² (Figure 7C), which
320	was significantly higher than that for the W/W-elicited PhNR1 (0.87) (Figure 7B), R/B-
321	elicited PhNR1 (0.87) (Figure 7A), and the W/W-elicited PhNR2 (0.86) (Figure 7D) at
322	the same intensity (P <0.05). It was also higher than the AUC for the R/B-elicited
323	PhNR2 (0.84) at 0.5 cd-s/m² (<i>P</i> <0.005).
324	
325	Implicit times of PhNRs
326	The implicit times of PhNR1 elicited by the R/B and W/W at the highest stimulus
327	intensity in normal subjects were 46.1 \pm 2.6 and 44.2 \pm 2.4 msec, respectively. The

- 328 corresponding values for the PhNR2 elicited by the R/B and W/W were 67.4 \pm 3.4 and
- 329 66.6 ± 4.4 msec, respectively. Thus, the implicit times of PhNR2 fell in a range from 65

330 to 75 msec that has been reported in ISCEV extended protocol [27].

332	Intersession reproducibility
333	The CVs for the PhNR1 amplitude in normal controls were 15.1 \pm 3.9 for R/B and 9.9 \pm
334	5.8 % for W/W. The corresponding values for the PhNR2 amplitude were 16.8 \pm 6.9 for
335	R/B and 13.9 \pm 11.8 for W/W, respectively. No significant difference was found between
336	the PhNR1 and PhNR2 amplitudes or between R/B and W/W. These values are
337	compatible with those in previous our report [4].
338	
339	DISCUSSION
340	The reduction of the PhNR amplitudes elicited by both W/W and R/B stimuli was
341	correlated with the decrease in the MD of the visual fields and reduction in the cpRNFL
342	thickness. The correlations between the PhNR1 and the MDs and cpRNFL were higher
343	for the PhNRs elicited by W/W stimuli than by the R/B stimuli. In contrast, the correlation
344	of the amplitude of the PhNR2 to the MDs and cpRNFL thickness was higher for the
345	PhNRs elicited by the R/B stimuli. This suggested that the W/W stimuli may be more
346	suitable for assessing the PhNR1 and the R/B stimuli for the PhNR2 responses. The
347	higher intensities of the stimuli used for the ERG recordings led to steeper the slopes of

348	the regression lines for both recording conditions indicating that high intensity stimuli
349	may be better for eliciting and evaluating the PhNRs. The best diagnostic ability in
350	discriminating advanced glaucoma from normal eyes was observed for the R/B-elicited
351	PhNR2 at the highest stimulus intensity.
352	
353	PhNRs elicited by W/W stimuli differ from those elicited by R/B stimuli
354	Although the intensities of the stimuli and background lights were photopically matched,
355	the waveforms of the PhNRs were different. With the R/B stimuli, the PhNR2 amplitudes
356	became larger as the stimulus intensities increased while the PhNR1 remained
357	unchanged. Therefore, stimuli with higher intensities produced larger PhNR2 than
358	PhNR1 with R/B stimuli. On the other hand, the PhNR1 amplitudes became larger than
359	the PhNR2 amplitudes with an increase of the W/W stimulus intensities. For
360	intermediate to higher stimulus intensities, the PhNR waveforms were dominated by the
361	PhNR1 elicited by the W/W stimuli and by the PhNR2 elicited by the R/B stimuli.
362	
363	It is reasonable to select the largest ERG component to assess the retinal function.
364	Therefore, the PhNR1 amplitude elicited by W/W stimuli have been used in some
365	studies [9, 11, 17, 18, 20], and the PhNR2 amplitude elicited by the R/B stimuli in other

366 studies [3-6, 10, 15].

367

368	Correlation of amplitude of PhNR with functional and morphological parameters
369	The amplitudes of PhNR1 and PhNR2 elicited by both the R/B and W/W stimuli were
370	significantly correlated with the MD and cpRNFL thickness. These findings are
371	consistent with previous reports [4, 5, 8, 9]. In most studies that compared the
372	correlations of the PhNR amplitudes with the visual field or OCT findings, it was found
373	that the amplitudes of the PhNRs elicited by R/B stimuli had higher correlation
374	coefficients than those elicited by the W/W stimuli [5, 8]. The PhNR2 amplitude was
375	exclusively measured and evaluated in these studies. As reported, the R/B-elicited
376	PhNR2 had higher correlations with the MD and the cpRNFL than the W/W-elicited
377	PhNR2. However, the W/W-elicited PhNR1 had higher correlation coefficients than the
378	R/B-elicited PhNR1 in our study. Therefore, an advantage of the R/B stimuli over the
379	W/W stimuli for evaluating the PhNR depends on whether PhNR1 or PhNR2 is being
380	analyzed.
381	
382	Higher stimulus intensities elicited larger amplitudes PhNRs in normal subjects except

383 for R/B-elicited PhNR1 while the PhNR amplitudes remained unchanged despite

384	increasing stimulus intensity in patients with glaucoma. As a result, the differences in
385	the PhNR amplitudes between normal and glaucomatous eyes become more prominent
386	at higher stimulus intensities (see Figure 2). Therefore, the slopes of the regression
387	lines representing correlations of the PhNR amplitude with the MD or cpRNFL thickness
388	became steeper when the ERG was recorded with the higher stimulus intensities. This
389	indicates that the PhNR amplitudes elicited by stimuli with higher intensities decrease
390	with a corresponding decrease in the MD or the cpRNFL thickness than those by lower
391	intensities. In other words, the higher stimulus intensities evoke PhNRs that are more
392	sensitive in detecting decreases of the MD and cpRNFL thickness.
393	
394	The stimulus with the highest intensity of 3.0 cd-s/m ² produced the steepest slopes.
395	This intensity is recommended by the ISCEV Standard to record the cone ERGs [26].
396	Higher stimulus intensities were not evaluated in the present study because there was
397	amplitude saturation or decrease [29]. In addition, it would evoke a blinking reaction to
398	the flashes giving rise to artifacts that would interfere with the evaluations of the PhNR.
399	
400	Abilities of PhNR amplitude to discriminate OAG from normal eyes

401 We could not obtain good diagnostic abilities of the PhNR amplitudes to discriminate

402	OAG from normal eyes. The diagnostic ability largely dependent on the degree of
403	glaucoma. We have reported that the AUCs of the OAG were 0.748, 0.865, and 0.954
404	for early, intermediate and advanced glaucoma, respectively [6]. In the present study,
405	nearly one-half of the patients had early glaucoma, which may have resulted in the
406	relatively small AUCs.
407	
408	For selected patients with advanced glaucoma, the AUCs were largest for the R/B-
409	elicited PhNR2 at the highest stimulus intensity. This indicates that the PhNR2 at the
410	highest intensity has a better ability in discriminating eyes with advanced glaucoma from
411	normal eyes. This is because the regression line representing the correlation between
412	the R/B PhNR amplitude and MDs was steepest at the highest intensity.
413	
414	Limitations of this study
415	We have examined the responses of equally light-adapt cones rather than rods. This
416	methodological difference should be considered when comparing our data with those of
417	earlier studies [10]. For instance, the earlier investigators demonstrated that RGC-
418	driven components were more dominated by the cone ERGs with the R/B than the W/W
419	stimuli over low to middle intensities [10]. However, our results showed that the R/B-

420 elicited PhNR is better than the W/W-elicited PhNRs when it is recorded by higher421 intensity stimuli.

423	Kremer et al suggested that the PhNR amplitude changes substantially with the
424	background luminance [7]. In this study, we fixed the intensity of the background light at
425	10 cd/m ² which is recommended by the ISCEV extended protocol [27]. There may be
426	other suitable background intensities besides our eliciting stimulus intensities. In
427	addition, they found that the best stimulus condition was 1 cd s/m ² for 458 nm flashes
428	on a 10 cd/m ² 591 nm background [7]. Further studies are needed to determine the
429	optimal stimulus conditions to elicit the PhNR with the best clinical significance.
430	
431	We measured only cpRNFL thickness as a structural parameter in the present study.
432	Ganglion cell complex (GCC) thickness has been widely used as a structural parameter
433	for diagnosing OAG [31]. Although data is not shown, the PhNR amplitudes were
434	significantly correlated with the GCC thickness with less correlation coefficients
435	compared to corresponding values of the cpRNFL thickness. This is probably because
436	the GCC thickness only reflects retinal structure in the posterior pole while the ERG is
437	derived from the whole retina.

439 **Conclusions**

- 440 The amplitudes of the PhNR elicited by both W/W or R/B stimuli are significantly
- 441 correlated with the function and morphology of the RGCs in eyes with OAG. The results
- suggest that the R/B-elicited ERGs are more suitable for recording the PhNR2 than the
- 443 W/W stimuli, while the W/W-elicited ERGs are more suitable for eliciting the PhNR1.
- 444 The PhNRs elicited by stimuli with higher intensity may be more sensitive in detecting
- 445 functional and morphological loss of the RGCs. The diagnostic ability of the PhNR
- 446 amplitude to discriminate advanced glaucoma from normal eyes is highest for the R/B-
- 447 elicited PhNR2 recorded by the highest intensity of stimuli.

448 **References**

449	1.	Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith III EL. The photopic
450		negative response of the macaque electroretinogram: reduction by experimental
451		glaucoma. Invest Ophthalmol Vis Sci. 1999; 40: 1124-36.
452	2.	Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in
453		macaques with experimental glaucoma: removal of spiking activity. Invest
454		Ophthalmol Vis Sci. 2000; 41: 2797-810.
455	3.	Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative
456		response of the flash electroretinogram in primary open angle glaucoma. Invest
457		Ophthalmol Vis Sci. 2001; 42: 514-22.
458	4.	Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D. Correlation between
459		photopic negative response and retinal nerve fiber layer thickness and optic disc
460		topography in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008; 49: 2201-7.
461	5.	Sustar M, Cvenkel B, Brecelj J. The effect of broadband and monochromatic stimuli
462		on the photopic negative response of the electroretinogram in normal subjects and in
463		open-angle glaucoma patients. Doc Ophthalmol. 2009; 118: 167-77.
464	6.	Machida S, Tamada K, Oikawa T, Gotoh Y, Nishimura T, Kaneko M, et al.
465		Comparison of photopic negative response of full-field and focal electroretinograms

466	in detecting glaucomatous eyes. J Ophthalmol. 2011; 2011: pii:564131.
467	7. Kremers J, Jertila M, Link B, Pangeni G, Horn FK. Spectral characteristics of the
468	PhNR in the full-field flash electroretinogram of normals and glaucoma patients. Doc
469	Ophthalmol. 2012; 124: 79-90.
470	8. Banerjee A, Khurana M, Sachidanandam R, Sen P. Comparison between broadband
471	and monochromatic photopic negative response in full-field electroretinogram in
472	controls and subjects with primary open-angle glaucoma. Doc Ophthalmol. 2019;
473	138: 21-33.
474	9. Gotoh Y, Machida S, Tazawa Y. Selective loss of the photopic negative response in
475	patients with optic nerve atrophy. Arch Ophthalmol. 2004; 122: 341-6.
476	10.Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA.
477	Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs
478	after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci. 2004; 45:
479	3827-37.
480	11. Miyata K, Nakamura M, Kondo M, Lin J, Ueno S, Miyake Y, et al. Reduction of
481	oscillatory potentials and photopic negative response in patients with autosomal
482	dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci. 2007; 48:
483	820-4.

484	12. Tamada K, Machida S, Yokoyama D, Kurosaka D. Photopic negative response of
485	full-field and focal macular electroretinograms in patients with optic nerve atrophy.
486	Jpn J Ophthalmol. 2009; 53: 608-14.
487	13. Moon CH, Hwang SC, Ohn YH, Park TK. The time course of visual field recovery
488	and changes of retinal ganglion cells after optic chiasmal decompression. Invest
489	Ophthalmol Vis Sci. 2011; 52: 7966-73.
490	14. Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK. Visual prognostic value of optical
491	coherence tomography and photopic negative response in chiasmal compression.
492	Invest Ophthalmol Vis Sci. 2011; 52: 8527-33.
493	15. Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ. The photopic negative response
494	of the flash electroretinogram in multiple sclerosis. Invest Ophthalmol Vis Sci. 2012;
495	53: 1315-23.
496	16. Machida S. Clinical application of photopic negative response to optic nerve and
497	retinal diseases. J Ophthalmol. 2012: 397178.
498	17. Machida S, Gotoh Y, Tanaka M, Tazawa Y. Predominant loss of the photopic
499	negative response in central retinal artery occlusion. Am J Ophthalmol. 2004; 137:
500	938-40.
501	18. Kizawa J, Machida S, Kobayashi T, Gotoh Y, Kurosaka D. Changes of oscillatory

502	potentials and photopic negative response in patients with early diabetic retinopathy.
503	Jpn J Ophthalmol. 2006; 50: 367-73.
504	19.Chen H, Wu D, Huang S, Yan H. The photopic negative response of the flash
505	electroretinogram in retinal vein occlusion. Doc Ophthalmol. 2006; 113: 53-9
506	20. Ueno S, Kondo M, Piao CH, Ikenoya K, Miyake Y, Terasaki H. Selective amplitude
507	reduction of the PhNR after macular hole surgery: ganglion cell damage related to
508	ICG-assisted ILM peeling and gas tamponade. Invest Ophthalmol Vis Sci. 2006; 47:
509	3545-49.
510	21. Nishimura T, Machida S, Harada T, Kurosaka D. Retinal ganglion cell function after
511	repeated intravitreal injections of ranibizumab in patients with age-related macular
512	degeneration. Clin Ophthalmol. 2012; 6: 1073-82.
513	22. Machida S, Toba Y, Nishimura T, Ohzeki T, Murai K, Kurosaka D. Comparisons of
514	cone electroretinograms after indocyanine green-, brilliant blue G-, or triamcinolone
515	acetonide-assisted macular hole surgery. Graefes Arch Clin Exp Ophthalmol. 2014;
516	252: 1423-33.
517	23. Yagura K, Shinoda K, Matsumoto S, Terauchi G, Watanabe E, Matsumoto H, et al.
518	Intraoperative electroretinograms before and after core vitrectomy. PLoS One 2016;

519 11: e0152052.

520	24. Rangaswamy NV, Shirato S, Kaneko M, Digby BI, Robson JG, Frishman LJ. Effects
521	of spectral characteristics of ganzfeld stimuli on the photopic negative response
522	(PhNR) of the ERG. Invest Ophthalmol Vis Sci. 2007; 48: 4818-28.
523	25. Miyata K, Ueno S, Kondo M, Koyasu T, Terasaki H. Comparison of photopic
524	negative responses elicited by red and white xenon flashes in monkeys. Jpn J
525	Ophthalmol. 2008; 52: 327-30.
526	26. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al.
527	ISCEV standard for full-field clinical electoretinography (2015 update). Doc
528	Ophthalmol. 2015; 130: 1-12.
529	27. Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R, et al. ISCEV
530	extended protocol for the photopic negative response (PhNR) of the full-field
531	electroretinogram. Doc Ophthalmol. 2018; 136: 207-11.
532	28. Nagata M. Studies on the photopic ERG of the human retina. Jpn J Ophthalmol.
533	1963; 7: 96-124.
534	29. Joshi NR, Ly E, Viswanathan S. Intensity response function of the photopic negative
535	response (PhNR): effect of age and test-retest reliability. Doc Ophthalmol. 2017;
536	135: 1-16.
537	30. Anderson DR, Patella VM. Automated static perimetry. 2nd edition. Mosby, St.

- 538 Louis,121-90,1999.
- 539 31. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of
- 540 macular ganglion cell loss in glaucoma by fourier-domain optical coherence
- 541 tomography. Ophthalmology 2009; 116: 2305-14.
- 542
- 543
- 544

545 Figure legends

546	Figure 1: Representative cone ERGs elicited by white stimuli on a white background
547	(W/W) to show how the amplitude of the PhNR was measured (A). The PhNR1
548	amplitude is measured from the baseline to the first trough following the b-wave. The
549	PhNR2 amplitude is measured from the baseline to the trough after the i-wave.
550	Representative cone ERGs elicited by W/W and by red stimuli on blue background
551	(R/B) stimuli from a normal and a glaucomatous eye with moderate defect of the visual
552	field (B). The amplitudes of both the PhNR1 and PhNR2 elicited by W/W and R/B stimuli
553	are smaller in the glaucomatous eye. ERG: electroretinogram; PhNR: photopic negative
554	response; OAG: open angle glaucoma
555	
556	Figure 2: PhNR1 (A and C) and PhNR2 amplitudes (B and D) elicited by R/B or W/W
557	stimuli are plotted against the stimulus intensity for normal and glaucomatous eyes.
558	Open and solid symbols represent normal and glaucomatous eyes (square: early,
559	triangle: intermediate and circle: advanced glaucoma), respectively. PhNR: photopic
560	negative response; R/B: red stimuli on a blue background; W/W: white stimuli on a white
561	background; Error bars: standard errors.

563	Figure 3: Correlation of the R/B-elicited PhNR1 (A, C, E, G) and the W/W-elicited
564	PhNR1 (B, D, F, H) to the mean deviation (MD) obtained by standard automated
565	perimetry. The stimulus intensities were 0.5 (A and B), 1.0 (C and D), 2.0 (E and F), and
566	3.0 (G and H) cd-s/m ² . The filled and open circles represent the glaucomatous and
567	normal eyes, respectively. R/B: red on a blue background; PhNR: photopic negative
568	response; W/W: white stimuli on a white background; OAG: open angle glaucoma
569	
570	Figure 4: Correlation of the R/B-elicited PhNR2 (A, C, E, G) and W/W-elicited PhNR2
571	(B, D, F, H) with the mean deviation (MD) obtained by standard automated perimetry.
572	The stimulus intensities were 0.5 (A and B), 1.0 (C and D), 2.0 (E and F) and 3.0 (G and
573	H) cd-s/m ² . Filled and open circles represent glaucomatous and normal eyes,
574	respectively. R/B: red stimuli on a blue background; PhNR: photopic negative response;
575	W/W: white stimuli on a white background; OAG: open angle glaucoma
576	
577	Figure 5: Correlation of the R/B-elicited PhNR1 (A, C, E, G) and W/W-elicited PhNR1
578	(B, D, F, H) with the circumpapillary retinal nerve fiber layer (cpRNFL) thickness
579	obtained by spectral-domain optical coherence tomography. The stimulus intensities
580	were 0.5 (A and B), 1.0 (C and D), 2.0 (E and F) and 3.0 (G and H) cd-s/m ² . Filled and

581	open circles represent glaucomatous and normal eyes, respectively. R/B: red stimuli on
582	a blue background; PhNR: photopic negative response; W/W: white stimuli on a white
583	background; OAG: open angle glaucoma
584	
585	Figure 6: Correlation of the R/B-elicited PhNR2 (A, C, E, G) and W/W-elicited PhNR2
586	(B, D, F, H) with the circumpapillary retinal nerve fiber layer (cpRNFL) thickness
587	obtained by spectral-domain optical coherence tomography. The stimulus intensities
588	were 0.5 (A and B), 1.0 (C and D), 2.0 (E and F) and 3.0 (G and H) cd-s/m ² . Filled and
589	open circles represent glaucomatous and normal eyes, respectively. R/B: red stimuli on
590	a blue background; PhNR: photopic negative response; W/W: white stimuli on a white
591	background; OAG: open angle glaucoma
592	
593	Figure 7: Receiver operating characteristic (ROC) curves for the R/B PhNR1 (A), W/W
594	PhNR1 (B), R/B PhNR2 (C) and W/W PhNR2 (D) in discriminating eyes with open angle
595	glaucoma from normal eyes. The stimulus intensities were 0.5 (white), 1.0 (light gray),
596	2.0 (dark gray) and 3.0 cd-s/m ² (black). The R/B PhNR2 elicited by 3.0 cd-s/m ² had the
597	highest value of the area under the ROC curve. R/B: red stimuli on a blue background;
598	PhNR: photopic negative response; W/W: white stimuli on a white background.