I	Effect of Long Spinal Fusion Including the Pelvis on Activities of Daily Living Related to Lumbar
2	Spinal Function in Adults with Spinal Deformity
3	
4	
5	Abstract
6	Background Spinal sagittal malalignment is managed via long spinal fusion including the pelvis,
7	which reduces the lumbar spinal range of motion, impairing the ability to perform certain activities
8	of daily living. The present study aimed to evaluate the changes in activities of daily living after long
9	spinal fusion in adults with spinal deformity, and to clarify the specific activities of daily living for
10	which patients perceived postoperative improvement or deterioration.
11	Methods We retrospectively reviewed 40 adults who underwent long spinal fusion in a single
12	institution between 2014 and 2016 (39 females, one male, age 68.5 (52-79) years). Each patient
13	undertook three self-assessed health-related quality of life measures preoperatively and 2 years
14	postoperatively: Oswestry Disability Index (ODI), Scoliosis Research Society (SRS)-22
15	questionnaire, and Japanese Orthopaedic Association back pain evaluation questionnaire
16	(JOABPEQ). Radiographic outcomes were measured preoperatively and at 2 years postoperatively.

17	Results The total ODI and all SRS-22 domains were improved at 2 years postoperatively. The
18	JOABPEQ scores were improved at 2 years postoperatively in all domains, except lumbar function.
19	The change in pelvic incidence minus lumbar lordosis correlated with improvements in total ODI,
20	SRS-22 function, and self-image scores. At 2 years postoperatively, satisfaction was correlated with
21	total ODI, all SRS-22 domains, and the pain domain of the JOABPEQ. Subclass analysis of the
22	JOABPEQ lumbar function domain at 2 years postoperatively revealed that 65% of patients had
23	difficulty 'putting on socks or stockings', 42% had great difficulty 'bending forward, kneeling, or
24	stooping', 32% reported improvement in 'sit to stand', and 32% reported deterioration in 'putting on
25	socks or stockings' after surgery compared with before surgery. The JOABPEQ lumbar spine
26	function domain was not correlated with the SRS-22 satisfaction domain.
27	Conclusions Despite restricting lumbar function, spinopelvic fusion improves health-related quality
28	of life. The JOABPEQ evaluates activities of daily living related to lumbar function.
29	

31 Introduction

32	The pathology of adult spinal deformity (ASD) involves not only coronal deformity, but also sagittal
33	malalignment such as loss of lumbar lordosis (LL), retroversion of the pelvis, and anterior shift of
34	the center of gravity axis with stooping. Sagittal malalignment in patients with ASD is associated
35	with physical and emotional disability, and a considerably impaired health-related quality of life
36	(HRQOL) [1, 2, 3]. Sagittal malalignment was quantified by the Scoliosis Research Society (SRS)-
37	Schwab ASD classification system using three radiographic parameters: mismatch between pelvic
38	incidence (PI) and LL (PI-LL), pelvic tilt (PT), and sagittal vertical axis (SVA), with cutoff values
39	reported for each parameter [4]. Improvement of these three parameters is currently the goal of ASD
40	surgery, so corrective long spinal fusion including the pelvis has been widely adopted for these
41	patients, especially those with severe deformities [5, 6]. However, this corrective spinal fusion
42	reduces the range of motion (ROM) of the lumbar spine, causing a decrease in the ability to perform
43	activities of daily living (ADL) related to the lumbar spine [7]. Understanding of these pathological
44	conditions has deepened recently, and tools for the evaluation of lumbar spine function have been
45	developed, typified by the lumbar stiffness disability index (LSDI) [8, 9, 10]. However, no studies
46	have investigated the effect of spinal fusion for restoration of spinal alignment in ASD on ADL

47	related to lumbar function. The present study aimed to compare the pre- and postoperative ADL of
48	ASD surgical patients using self-reported HRQOL questionnaires such as the Oswestry disability
49	index (ODI), SRS-22 questionnaire, and Japanese Orthopaedic Association back pain evaluation
50	questionnaire (JOABPEQ), and to identify the specific ADL for which the patients perceived
51	postoperative improvement or deterioration.
52	Materials and Methods
53	Study patients
54	After receiving institutional review board approval, 149 consecutive patients with ASD were
55	identified in the surgical registry of a single center. The present study is a retrospective case review
56	of these consecutive patients with ASD who underwent corrective spinal surgery in a single
57	institution between 2014 and 2016. The surgical indication for these patients was severe spinal
58	deformity with a stooped posture, abnormal gait, lower back pain due to sagittal imbalance, and
59	lumbar or thoracolumbar kyphosis. To standardize the fusion level of the included patients, we
60	selected patients whose main deformity was localized as a thoracolumbar or lumbar lesion requiring
61	long spinal fusion of more than eight segments from the lower thoracic vertebrae (T9 or T10) to the
62	pelvis. We excluded patients with rigid thoracic deformity requiring upper thoracic fusion, and/or

63	those with posttraumatic severe kyphosis, ankylosing spondylitis, a rounded back due to Parkinson's
64	disease, or a follow-up duration of less than 2 years. A final total of 40 patients were eligible for
65	study inclusion. The included patients comprised 39 females and one male, with a median age of
66	68.5 years (range, 52–79 years), and a mean follow-up period for clinical and radiographic outcomes
67	of 33.4 months (range, 24–66 months).
68	Health-related quality of life domains and the definitions of improvement rate
69	Each patient undertook three self-assessed HRQOL measures: the ODI [11], SRS-22
70	questionnaire [12], and JOABPEQ [13] preoperatively and at 2 years postoperatively. We
71	investigated the improvement rate for each subclass in accordance with the definitions reported by
72	Yoshida et al. [14]. For the SRS-22 and JOABPEQ, the improvement rate was calculated as $100 \times [2$
73	year postoperative score – preoperative score] / preoperative score. For the ODI, the improvement
74	rate was calculated as 100 [preoperative score -2 year postoperative score] / preoperative score.
75	Subclass analysis of the lumbar function domain on the Japanese Orthopaedic Association back
76	pain evaluation questionnaire
77	To evaluate the impact of limitation of lumbar function, we analyzed each item of the
78	lumbar function domain in the JOABPEQ (Q2-1 to Q2-6), and compared the preoperative and 2-

79	year-postoperative scores. Each item is described in Figure 1. We defined improvement as an answer
80	of "Yes" preoperatively, and "No" postoperatively for each question from Q2-1 to Q2-5;
81	deterioration was defined as an answer of "No" preoperatively, and "Yes" postoperatively. We
82	defined improvement as an answer more than one level better postoperatively than preoperatively,
83	such as a change from "great difficulty" preoperatively to "no difficulty" or "some difficulty"
84	postoperatively for Q2-6. We defined deterioration as an answer more than one level worse
85	postoperatively than preoperatively, such as a change from "no difficulty" preoperatively to "some
86	difficulty" or "great difficulty" postoperatively for Q2-6.
87	Radiographic analysis
88	Anteroposterior and lateral full-length standing spine radiographs were obtained at
89	preoperative and at two years after surgery. Measurements made in the sagittal plane included
90	thoracic kyphosis (T5-T12), LL (L1-S1), SVA, PI, PT, PI-LL and T1-pelvic angle (TPA). These
91	radiographic parameters were classified in accordance with the SRS-Schwab ASD classification [4].
92	Statistical analysis
93	Normal distribution of the data was demonstrated with the Shapiro-Wilk test. Changes

95	were evaluated using the Wilcoxon signed-rank test, and categorical variables were evaluated using
96	Fisher's exact test. The Spearman rank correlation coefficient was used to analyze the correlation
97	between the radiographic parameters and HRQOL. The rates of improvement and deterioration in
98	each question of the JOABPEQ regarding lumbar function were evaluated using the McNemar test.
99	Statistical analyses were performed using the SPSS version 25 statistical software package (IBM-
100	SPSS, Inc., Chicago, IL). A P value of less than 0.05 was considered statistically significant.
101	Results
102	Table 1 shows the three sagittal modifiers [4] and radiographic parameters, most of
103	which had improved significantly at 2 years postoperatively.
104	Improvement rate of the health-related quality of life score
105	The mean total ODI score and all SRS-22 domain scores were significantly improved at
106	2 years postoperatively. The mean JOABPEQ scores were improved at 2 years postoperatively in all
107	domains, except the lumbar function domain (Table 2). The mean improvement rate at 2 years
108	postoperatively exceeded 20% in many domains, while the improvement rate did not change at all (-
109	3%) in the lumbar function domain of the JOABPEQ (Table 2).
110	Correlation between the health-related quality of life scores and radiographic parameters

111	The correlations between the changes in radiographic parameters and improvement in
112	HRQOL are shown in Table 3. The change in PI-LL correlated with improvement in the total ODI
113	score, and in the function and self image scores of the SRS-22 (Table 3). Table 4 shows the factors
114	affecting patient satisfaction at 2 years postoperatively. The total ODI score and all SRS-22 domains
115	were significantly correlated with satisfaction at 2 years postoperatively. There was no correlation
116	between satisfaction at 2 years postoperatively and any of the JOABPEQ domains, except the pain
117	domain, or the three sagittal modifiers (Table 4).
118	Subclass analysis of lumbar function in the Japanese Orthopaedic Association back pain evaluation
119	questionnaire
120	Table 5 shows the subclass analysis of lumbar function in the JOABPEQ (Q2-1 to Q2-6).
121	At 2 years postoperatively, a limitation was perceived by 30% or less of patients in Q2-1, Q2-3 and
122	Q2-4, whereas 65% of patients perceived a limitation in Q2-5 (putting on socks or stockings) (Table
123	5). Figure 1 shows the rates of improvement and deterioration for each question. Significant
124	improvement was observed in Q2-3, with 32.5% of patients gaining the ability to perform the 'sit to
125	stand' ADL; significant deterioration was observed in Q2-5, with 32.5% of patients losing the ability
126	to perform the ADL of 'putting on socks or stockings' (Figure 1).

127 Discussion

128	The current study revealed that the patient-reported lumbar function score in patients
129	with ASD who underwent long spinal fusion including the pelvis had not improved at 2 years
130	postoperatively. Subclass analysis of the JOABPEQ lumbar function domain revealed that 65% of
131	patients had difficulty 'putting on socks or stockings', and 42% of patients had great difficulty
132	'bending forward, kneeling, or stooping' at 2 years postoperatively. In addition, 32% of patients
133	perceived a postoperative improvement in the ADL of 'sit to stand', whereas 32% of patients
134	perceived a postoperative deterioration in 'putting on socks or stockings'. The novelty of the present
135	study was the investigation of the improvement and deterioration rates of ADLs related to the
136	lumbar spine by subclass analysis of self-reported lumbar function outcomes. This was not
137	mentioned in previous reports.
138	Previous studies report that poor sagittal spinopelvic parameters (such as a large SVA or
139	PT) are correlated with poor HRQOL, and surgical correction of spinopelvic parameters results in
140	improvement of HRQOL [1, 2]. An expanded indication of spinopelvic fusion for patients with ASD
141	led to a focus on trunk mobility and ADLs, while the LSDI is used to evaluate lumbar stiffness [9,
142	10]. Sciubba et al. reported that the scores for most of the LSDI questions did not significantly

143	change from preoperatively to 2 years postoperatively, while there was a tendency for postoperative
144	worsening in Q1 (putting on underwear and pants) and Q4 (personal hygiene functions following
145	toiletting), and a significant postoperative worsening regarding Q2 (socks and shoes) and Q8
146	(bathing the lower half of the body) [15]. Hart et al. showed that patients who underwent long spinal
147	fusion (more than five segments) had worsened LSDI scores postoperatively, and 35.3% of patients
148	considered lower back stiffness to be a significant limitation on daily activities [16]; however,
149	postoperative lumbar stiffness was reportedly within an acceptable range as a trade-off for
150	improvement in function and pain at 93.8% [16]. Subclass analysis of the lumbar function domain of
151	the JOABPEQ in the current study showed that there was significant deterioration in the ADL of
152	'putting on socks or stockings', while there was no correlation between the lumbar spine function
153	score in the JOABPEQ and the satisfaction score in the SRS-22. Similarly, Hart et al. reported no
154	correlation between final LSDI and satisfaction scores at 2 years postoperatively [17]. These results
155	indicate that the restriction of lumbar function due to spinopelvic fusion does not diminish the
156	benefit of these surgeries.
157	Bible et al. used a noninvasive electrogoniometer and torsiometer to investigate the

158 relationships between 15 ADLs and lumbar ROM in 60 asymptomatic adults, and reported that a

159	large proportion of lumbar ROM was required for some ADLs such as squatting, bending, sit to
160	stand, stand to sit, putting on socks, and putting on shoes [18]. Hence, patients with long spinal
161	fusion including the pelvis are expected to lose the ability to perform most of these ADLs, and so it
162	is acceptable that 32% of patients postoperatively lost the ability to put on socks or stockings in the
163	present study. However, it was paradoxical that 32% of patients postoperatively gained the ability to
164	perform the ADL 'sit to stand', which requires a large lumbar ROM. The difference between these
165	two ADLs may be the maximum flexion angle required by each activity. Lumbar flexion of up to
166	30° is required for 'sit to stand', whereas lumbar flexion of up to 50° is required for 'putting on
167	socks' [18]. The ADLs related to the lumbar spine were influenced not only by the lumbar ROM, but
168	also by the ROM of the hip and knee joints. Therefore, support via the ROM of the hip and knee
169	joints and/or the stable spine with postoperative optimal sagittal alignment may have enabled the
170	present patients to postoperatively attain the ability to perform the ADL of 'sit to stand'. In contrast,
171	the loss of the ADL 'putting on socks' was inevitable, even with the support of the hip and knee
172	joints and the postoperatively stable spine, as this ADL requires deeper lumbar flexion.
173	The SRS-22 is widely used as an evaluation tool for patients with ASD who undergo
174	surgery, but it cannot evaluate lumbar spine function in detail. The ODI is also widely used as an

175	evaluation tool for spinal surgery, and contains some questions to evaluate lumbar spine function,
176	but is not as definitive as the LSDI. Yoshida et al. performed an ODI subclass analysis that revealed
177	that patients with ASD who undergo spinal fusion of more than four levels remain restricted in the
178	two subdomains of 'personal care' and 'lifting', even 1 year postoperatively [14]. In the present study,
179	60% of patients had difficulty putting on socks or stockings preoperatively, but the remaining 40%
180	of patients did not have difficulty with this ADL. For such patients without preoperative restrictions
181	in putting on socks or stockings, it is necessary to sufficiently explain that the ADLs related to
182	lumbar stiffness become difficult postoperatively.
183	The current study had some limitations. First, it was a retrospective and single-center
184	study. Therefore, the possibility of unintentional selection bias in the selection of patients could not
185	be fully excluded. Second, we used the JOABPEQ, which is not commonly used as an evaluation
186	tool for ASD worldwide. The present results need to be compared with results obtained using more
187	widespread tools such as the LSDI to determine whether they are universal. Finally, we did not
188	accurately evaluate the postoperative changes in trunk ROM (including the lumbar spine and hip
189	joints), trunk muscular strength, and walking ability. In the future, these parameters should be

190	evaluated, as they may have a greater impact on lumbar spine function than postoperative spinal
191	alignment.
192	In summary, the HRQOL scores (except the lumbar function of the JOABPEQ)
193	improved along with the correction of global alignment after ASD surgery. Long spinal fusion
194	including the pelvis enabled one-third of patients to gain the ability to perform the ADL of 'sit to
195	stand', and caused one-third of patients to lose the ability to 'put on socks or stockings'. We should
196	recognize these limitations, and thoroughly explain them to patients with ASD and their families.
197	Acknowledgments
198	We thank Kelly Zammit, BVSc, from Edanz Group (www.edanzediting.com/ac), for editing a draft
199	of this manuscript.
200	
201	References
202	1. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive
203	sagittal balance in adult spinal deformity. Spine. 2005 Sep 15;30(18):2024-9.
204	2. Lafage V, Schwab F, Patel A, Hawkinson N, Farcy JP. Pelvic tilt and truncal inclination: two key
205	radiographic parameters in the setting of adults with spinal deformity. Spine. 2009 Aug

206 1;34(17):599-606.

	207	3.	Pellisé F, Vila-Casademu	nt A, Ferrer	M, E	Domingo-Sà	ibat M, B	agó J,	, Pérez-Grueso	FJ, Ala	na
--	-----	----	--------------------------	--------------	------	------------	-----------	--------	----------------	---------	----

- 208 A, Mannion AF, Acaroglu E; European Spine Study Group, ESSG . Impact on health related
- 209 quality of life of adult spinal deformity (ASD) compared with other chronic conditions. Euro
- **210** Spine J. 2015 Jan 1;24(1):3-11.
- 211 4. Schwab F, Ungar B, Blondel B, Buchowski J, Coe J, Deinlein D, DeWald C, Mehdian
- 212 H, Shaffrey C, Tribus C, Lafage V. Scoliosis Research Society-Schwab adult spinal deformity
- 213 classification: a validation study. Spine. 2012 May 20;37(12):1077-82.
- 214 5. Ploumis A, Transfledt EE, Denis F. Degenerative lumbar scoliosis associated with spinal stenosis.
- **215** Spine J. 2007 Jul 1;7(4):428-36.
- **216** 6. Silva FE, Lenke LG. Adult degenerative scoliosis: evaluation and management. Neurosurg Focus.
- **217** 2010 Mar;28(3):E1.
- 218 7. Bafus T, Shea M, Hart R. Impairment of perineal care functions after long fusion of the lumbar
- 219 spine. Clin Orthop Relat Res. 2005 Apr 1;433:111-4.
- 8. Choi JH, Jang JS, Yoo KS, Shin JM, Jang IT. Functional limitations due to stiffness after long
- 221 level spinal instrumented fusion surgery to correct lumbar degenerative flat back. Spine. 2018

222	Aug 1;43	(15):1044-51
	<u> </u>	(-)

223	9.	Hart RA, Pro SL, Gundle KR, Marshall LM. Lumbar stiffness as a collateral outcome of spinal
224		arthrodesis: a preliminary clinical study. Spine J. 2013 Feb 1;13(2):150-6.
225	10.	Hart RA, Gundle KR, Pro SL, Marshall LM. Lumbar Stiffness Disability Index: pilot testing of
226		consistency, reliability, and validity. Spine J. 2013 Feb 1;13(2):157-61.
227	11.	Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine. 2000 Nov 15;25:2940-52.
228	12.	Haher TR, Gorup JM, Shin TM, Homel P, Merola AA, Grogan DP, Pugh L, Lowe TG, Murray
229		M. Results of the Scoliosis Research Society instrument for evaluation of surgical outcome in
230		adolescent idiopathic scoliosis. A multicenter study of 244 patients. Spine. 1999 Jul
231		15;24(14):1435-40.
232	13.	Fukui M, Chiba K, Kawakami M, Kikuchi S, Konno S, Miyamoto M, Seichi A, Shimamura T,
233		Shirado O, Taguchi T, Takahashi K, Takeshita K, Tani T, Toyama Y, Yonenobu K, Wada E,
234		Tanaka T, Hirota Y. Japanese Orthopaedic Association back pain evaluation questionnaire. Part
235		2. Verification of its reliability. J Orthop Sci. 2007 Nov 1;12(6):526-32.
236	14.	Yoshida G, Boissiere L, Larrieu D, Bourghli A, Vital JM, Gille O, Pointillart V, Challier
237		V, Mariey R, Pellisé F, Vila-Casademunt A, Perez-Grueso FJ, Alanay A, Acaroglu

238		E, Kleinstück F, Obeid I; ESSG, European Spine Study Group. Advantages and disadvantages
239		of adult spinal deformity surgery and its impact on health-related quality of life. Spine. 2017 Mar
240		15;42(6):411-9.
241	15.	Sciubba DM, Scheer JK, Smith JS, Lafage V, Klineberg E, Gupta M, Mundis GM, Protopsaltis
242		TS, Kim HJ, Hiratzka JR, Koski T, Shaffrey CI, Bess S, Hart RA, Ames CP. Which daily
243		functions are most affected by stiffness following total lumbar fusion: comparison of upper
244		thoracic and thoracolumbar proximal endpoints. Spine. 2015 Sep 1;40(17):1338-44.
245	16.	Hart RA, Marshall LM, Hiratzka SL, Kane MS, Volpi J, Hiratzka JR. Functional limitations due
246		to stiffness as a collateral impact of instrumented arthrodesis of the lumbar spine. Spine. 2014
247		Nov 15;39(24):E1468-74.
248	17.	Hart RA, Hiratzka J, Kane MS, Lafage V, Klineberg E, Ames CP, Line BG, Schwab F, Scheer
249		JK, Bess S, Hamilton DK, Shaffrey CI, Mundis G, Smith JS, Burton DC, Sciubba DM, Deviren
250		V, Boachie-Adjei O. International Spine Study Group. Stiffness after pan-lumbar arthrodesis for
251		adult spinal deformity does not significantly impact patient functional status or satisfaction
252		irrespective of proximal endpoint. Spine. 2017 Aug 1;42(15):1151-1157.
253	18.	Bible JE, Biswas D, Miller CP, Whang PG, Grauer JN. Normal functional range of motion of the

254	lumbar spine during 15 activities of daily living. J Spinal Disord Tech. 2010 Apr 1;23(2):106-12.
255	
256	Figure Legends
257	Figure 1. Graph showing the improvement and deterioration rates for each item related to lumbar
258	function in the Japanese Orthopaedic Association back pain evaluation questionnaire. The asterisks
259	indicate significant differences ($P < 0.05$) in McNemar's test.
260	