1	Treatment with both nintedanib and steroid in bleomycin-induced pulmonary
2 3	fibrosis model mice exacerbated lung fibrosis
4 5 6	Sadaaki Shiromori ^a , Hirokuni Hirata ^a , Kozo Sato ^a , Kazuhiro Tada ^a , Masafumi Arima ^b , Yasutsugu Fukushima ^a
7 8 9 10	 ^a Department of Respiratory Medicine and Clinical Immunology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama 343-0845, Japan ^b Department of Rheumatology, Dokkyo Medical University, Tochigi, Japan.
11	Short Title: Nintedanib+steroid treatment exacerbates lung fibrosis
12 13 14 15 16 17 18 19	Corresponding Author: Hirokuni Hirata, MD Department of Respiratory Medicine and Clinical Immunology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama 343-0845, Japan Tel: +81-48-965-1111, Fax: +81-48-965-1238, E-mail: hirokuni@dokkyomed.ac.jp
20	Keywords: nintedanib, steroid, bleomycin-induced pulmonary fibrosis

Abstract

23 Background: In the clinical setting, the optimal timing of administration of nintedanib 24 in the active or inactive phase of idiopathic pulmonary fibrosis (IPF) has not been 25 clarified. Also, no consideration has been made of synergistic actions with steroids. Objectives: We used bleomycin-induced pulmonary fibrosis model mice to analyze the 26 27 effects of the timing of nintedanib administration and synergistic actions in combination 28 with steroid. Method: In the bleomycin-induced pulmonary fibrosis mouse model, nintedanib was 29 30 given before or after bleomycin administration and the effects on pulmonary fibrosis 31 and fibroblast growth factors in bronchoalveolar lavage (BAL) fluid were analyzed. 32 Then, treatment with both steroid and nintedanib was administered in the same model 33 and the effects of combined use on lung fibrosis were analyzed. Severity of lung fibrosis was analyzed using the Ashcroft score. Fibroblast growth factors in BAL fluid were 34 measured using Magnetic Luminex[®] assay and enzyme-linked immunosorbent assay. 35 36 Results: Pretreatment with nintedanib before administration of bleomycin, but not after 37 administration of bleomycin, reduced the Ashcroft score $(2.4\pm1.4 \text{ vs } 4.9\pm1.3, P<0.01)$ and decreased TGF-β1 in BAL fluid (95.7±48.4 pg/mL vs 147.1±11.7 pg/mL, P<0.05). 38

22

39	Conversely, pretreatment with both steroid and nintedanib did not decrease the Ashcroft
40	score compared with pretreatment of saline as a control (Score: 3.8 ± 1.3 vs 4.6 ± 1.1).
41	There was also no synergistic effect of both steroid and nintedanib on pulmonary
42	fibrosis.
43	Conclusions: Nintedanib may be useful when administered early in patients with IPF.
44	Further, clinically, administration of combined nintedanib and steroid requires caution
45 46	in view of the effects on pulmonary fibrosis and side effects.
47	Introduction
48	Idiopathic pulmonary fibrosis (IPF) is one of the idiopathic interstitial pneumonias
48 49	Idiopathic pulmonary fibrosis (IPF) is one of the idiopathic interstitial pneumonias (IIPs). It is a type of lung disease characterized by extensive fibrosis in the lungs and
48 49 50	Idiopathic pulmonary fibrosis (IPF) is one of the idiopathic interstitial pneumonias (IIPs). It is a type of lung disease characterized by extensive fibrosis in the lungs and causes restrictive ventilatory impairment. Compared with other IIPs, IPF shows poor
48 49 50 51	Idiopathic pulmonary fibrosis (IPF) is one of the idiopathic interstitial pneumonias (IIPs). It is a type of lung disease characterized by extensive fibrosis in the lungs and causes restrictive ventilatory impairment. Compared with other IIPs, IPF shows poor response to steroids and immunosuppressive drugs and carries a poor prognosis ¹). IPF is
48 49 50 51 52	Idiopathic pulmonary fibrosis (IPF) is one of the idiopathic interstitial pneumonias (IIPs). It is a type of lung disease characterized by extensive fibrosis in the lungs and causes restrictive ventilatory impairment. Compared with other IIPs, IPF shows poor response to steroids and immunosuppressive drugs and carries a poor prognosis ¹). IPF is the most common of the IIPs.
 48 49 50 51 52 53 	Idiopathic pulmonary fibrosis (IPF) is one of the idiopathic interstitial pneumonias (IIPs). It is a type of lung disease characterized by extensive fibrosis in the lungs and causes restrictive ventilatory impairment. Compared with other IIPs, IPF shows poor response to steroids and immunosuppressive drugs and carries a poor prognosis ¹). IPF is the most common of the IIPs. The precise etiology is not yet known, but smoking is considered to be a risk factor
 48 49 50 51 52 53 54 	Idiopathic pulmonary fibrosis (IPF) is one of the idiopathic interstitial pneumonias (IIPs). It is a type of lung disease characterized by extensive fibrosis in the lungs and causes restrictive ventilatory impairment. Compared with other IIPs, IPF shows poor response to steroids and immunosuppressive drugs and carries a poor prognosis ¹). IPF is the most common of the IIPs. The precise etiology is not yet known, but smoking is considered to be a risk factor ²). In IPF, inflammation does not necessarily precede fibrosis, but with increased

56	required for repair ensues with an abnormal repair reaction, leading to the progression
57	of fibrosis ^{3,4}). Interstitial thickening is considered to reduce oxygen uptake causing
58	restrictive disorder (reduced vital capacity) due to decreased lung compliance;
59	symptoms include dry cough and dyspnea on exertion ^{5, 6)} . Transforming growth factor
60	(TGF)- β is considered to play an important role in fibrosis, and it is known to cause
61	epithelial-mesenchymal transition (EMT) to type II alveolar epithelium ^{7, 8)} . It is also
62	known to induce differentiation into fibroblasts and myofibroblasts ⁹⁾ . There is no
63	curative treatment for IPF and currently available treatments, except for lung
64	transplantation, only slow progression ¹⁰ .
65	Recently, pirfenidone was reported to suppress fibrosis, and it has been found to
66	reduce deterioration in relation to forced vital capacity (FVC) and the 6-min walk test
67	compared with placebo ^{11, 12}). Although the mechanism of action of pirfenidone is
68	unclear, it is known to suppress TGF- β and tumor necrosis factor (TNF)- α in vitro ¹³).
69	More recently, nintedanib, a small molecule tyrosine kinase inhibitor (TKI) and
70	indolinone derivative, has been used as a therapeutic agent for IPF ^{14, 15}). Vascular
71	endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived

72	growth factor (PDGF) promote angiogenesis and fibroblast proliferation ^{16~18}).
73	Nintedanib acts on VEGF, FGF, and PDGF receptors ¹⁹⁾ and thus inhibits PDGF, FGF,
74	VEGF-stimulated proliferation and migration of lung fibroblasts and subsequently
75	TGF- β -induced fibroblast transformation ^{19, 20)} . However, in the clinical setting, the
76	timing of administration of nintedanib in the active or inactive phase of IPF has not
77	been clarified. Also, no consideration has been made regarding synergistic actions with
78	steroids.
79	Here, we used a bleomycin-induced pulmonary fibrosis mouse model to analyze
80	the effects of the timing of nintedanib administration and the synergistic action with
81	steroid.
82	
83	Materials and Methods
84	Animals
85	Nine-week old female C57BL/6 mice were purchased from Japan SLC, Inc. (Shizuoka,
86	Japan). This study was approved by the Animal Ethics Committee of Dokkyo Medical
87	University Saitama Medical Center (No. 767).

89 Effects of treatment with nintedanib before and after administration of bleomycin

90	To investigate the effect of nintedanib before and after inducing lung inflammation, we
91	performed transesophageal treatment with nintedanib before or after intratracheal
92	administration of bleomycin. Figure 1A shows the protocol. Saline (bleomycin[-])
93	(Group 1) or bleomycin sulfate (bleomycin[+]; 5 mg/kg body weight; Nippon Kayaku,
94	Tokyo, Japan) (Group 2, 3, and 4) was given by intratracheal administration to mice
95	anesthetized with medetomidine hydrochloride (Zenoaq, Fukushima, Japan), midazolam
96	(Astellas Pharma Inc., Tokyo, Japan), and butorphanol tartrate (Meiji Seika Pharma Co.,
97	Ltd., Tokyo, Japan), as a mixture of the 3 anesthetics (10 mL/kg body weight) on day
98	(D)1. Nintedanib (LC Laboratories, Boston, MA) (3 mg/kg body weight) with doses
99	similar to humans was given by transesophageal administration before (D0) (Group 3)
100	or after (D2) (Group 4) intratracheal administration of bleomycin. In contrast to
101	treatment with nintedanib, transesophageal saline was administered after (D2) (Group 2)
102	intratracheal administration of bleomycin. Subsequently, nintedanib (Group 1, Group 3,

and Group 4) or saline (Group 2) was given daily, twice a day from D2 to D6 and from
D8 to D13. The dose of nintedanib was determined similar to the dose used in humans.

105

106 *Effects of treatment with both nintedanib and steroid before and after administration*107 *of bleomycin*

108 To investigate the effect of nintedanib with steroid before and after inducing lung 109 inflammation, we performed transesophageal treatment with nintedanib and 110 dexamethasone before or after intratracheal administration of bleomycin. Figure 2 111 shows the protocol. Groups 2, 3, and 4 were administered bleomycin to induce 112 pulmonary fibrosis. Saline (bleomycin[-]) (Group 1) or bleomycin sulfate 113 (bleomycin[+]; 5 mg/kg body weight) (Groups 2, 3, and 4) was given by intratracheal 114 administration to mice using a mixture of the 3 anesthetics on D1. Both nintedanib (3 115 mg/kg body weight) and moderate dexamethasone (0.1 mg/kg body weight) when 116 treated to humans was given by transesophageal administration before (D0) (Group 3) 117 or after (D2) (Group 4) intratracheal administration of bleomycin. Alternatively, saline 118 was given by transesophageal administration after (D2) (Group 2) intratracheal

administration of bleomycin. Subsequently, both nintedanib and dexamethasone
(Groups 1, 3, and 4) or saline (Group 2) was given daily, twice and once a day,
respectively, from D2 to D6 and from D8 to D13.

122

123 Bronchoalveolar lavage

124 A single incision was made in the neck and the tissue covering the trachea was snipped 125 to expose the tracheal rings. Bronchoalveolar lavage (BAL) fluid was collected on D15 126 after bleomycin or saline administration; histological examination of the lungs was also 127 performed on D15. Using a 1.5 ml syringe, 0.5 ml was injected into the trachea once, 128 and BAL was performed 3 times. The BAL fluid sample was centrifuged at 400 g for 129 10 min at 4°C, and the supernatant was stored at -80°C until analysis. 130 Concentration of FGF2, PDGF-AA, VEGF-A, and collagen in BAL fluid 131 132 BAL fluid samples were concentrated by centrifugal ultrafiltration (Amicon Darmstadt,

133 Germany), which is used to concentrate low molecular weight components. The cut-off

134 value for molecular weight was 3000. BAL fluid levels of FGF2, PDGF-AA, VEGF-A

135	were measured by Magnetic Luminex Assay, Mouse Premixed Multi-Analyte Kit (R&D,
136	Minneapolis, MN) using a multi-item simultaneous measurement device (Luminex
137	Japan Corporation, Tokyo, Japan). The minimum detectable dose (MDD) was 41.3
138	pg/mL, 0.9 pg/mL, and 4.0 pg/mL, respectively. In addition, concentrations of TGF- β 1
139	were measured using enzyme-linked immunosorbent assay kits (R&D, Minneapolis,
140	MN) according to the manufacturer's instructions. In preliminary experiment, albumin
141	concentration in BAL was measured for 5 mice in all groups presented this time, and
142	corrected for the concentration of each protein (TGF- β , VEGF, PDGF-AA). However,
143	since there was no significant difference, no correction by albumin concentration was
144	performed in this study. The MDD was 4.6 pg/mL. Collagen measurements were
145	determined using the Sircol Collagen Assay kit (Biocolor Ltd., Belfast, UK) ²¹⁾ . The
146	collagen concentration was measured at 549 nm on a spectrophotometer.

148 *Histopathological analysis*

149 The right lung tissues were preserved in order to develop this study in the future, and 150 the left lung was used in this study. To fix the lung, paraformaldehyde in phosphate

151	buffer was perfused into the left lung at a constant pressure. After fixation, lung tissues
152	were embedded in paraffin and sectioned with a microtome at a thickness of 3-5 μ m.
153	Sections were mounted on slides and stained with hematoxylin and eosin (HE),
154	Elastica-Masson (EM), and for immunohistochemistry (IHC). For each mouse, three
155	sections of the whole lung stained with HE and EM were selected randomly. To analyze
156	the severity of lung fibrosis, grading was scored on a scale from 0 to 8, using the
157	average of microscope field scores, as described previously ²²⁾ . Biological micrographs
158	were taken with a digital camera for microscope (model DP73; Olympus Corporation,
159	Tokyo, Japan) with a $\times 10$ and $\times 40$ lens.

161 Immunostaining analysis

Paraffin-embedded sections of tissue were deparaffinized and dehydrated following antigen retrieval with citric acid buffer, as described previously ²³⁾. Slides were first incubated with blocking IgG solution for 1 h and then overnight with rabbit anti-TGF- β 1 antibody (1:100 dilution; Abcam), rabbit anti-FGF2 antibody (1:200 dilution; Bioss, Woburn, MA), anti-VEGF-A antibody (1:200 dilution; Abcam), or

167	rabbit anti-PDGF-AA antibody (1:400 dilution; Bioss). The secondary antibody used
168	was a labeled polymer containing peroxidase and Fab' anti-IgG bound to an amino acid
169	polymer (Histofine mouse stain kit; Nichirei Bioscience, Tokyo, Japan).
170	
171	Statistical analysis
172	Data are expressed as means \pm standard deviation (SD). Statistical significance was
173	determined with the Mann-Whitney U test for each group. P values < 0.05 were
174	considered significant. JMP software (Version 11.0; SAS Institute, Cary, NY) was used
175	for statistical analyses.
176	
177	Results
178	Effects of nintedanib before and after administration of bleomycin: histopathological
179	analysis and TGF-\$1, FGF2, PDGF-AA, VEGF-A, and collagen concentrations in
180	BAL fluid
181	We first performed histopathological analysis (Figure. 3A to Figure. 3H) and measured

182 concentrations of collagen (Figure. 3J), TGF-β1 (Figure. 3K), PDGF-AA (Figure. 3L),

183	and VEGF-A (Figure. 3M) in BAL fluid on D15 of lung treatment with nintedanib
184	before and after administration of bleomycin in. The Ashcroft score as an index of lung
185	fibrosis (Figure. 31) was significantly reduced in Group 3 compared with Group 2
186	(2.4±1.4 vs 4.9±1.3, P<0.01) but not in Group 4 (3.6±1.5, P=0.106) compared with
187	Group 2.
188	The concentration of collagen in BAL fluid was significantly reduced in Group 3
189	compared with Group 2 (4.4 \pm 3.0 µg/mL vs 10.0 \pm 6.5 µg/mL, P<0.05; Figure. 3J) but not

190 in Group 4 (7.0±3.0 pg/mL) compared with Group 2. In addition, the concentration of

191 TGF-β1 in BAL fluid was significantly reduced in Group 3 compared with Group 2

- 192 (95.7±48.4 pg/mL vs 147.1±11.7 pg/mL, P<0.05; Figure. 3K) but not in Group 4
- 193 (120.2±26.4 pg/mL) compared with Group 2. The concentrations of PDGF-AA and
- 194 VEGF-A in BAL fluid were not reduced in either Group 4 or Group 3 compared with
- 195 Group 2. FGF2 was not detected in BAL fluid in any of the groups (data not shown).
- 196

197 Bleomycin-induced pulmonary fibrosis: IHC analysis

198	We performed IHC analysis on D15 after administration of bleomycin (Figure 4).
199	TGF- β 1 were expressed in lung fibroblasts (Figure 4B). Although FGF2 was not
200	detected in BAL fluid, it was expressed in lung fibroblasts (Figure 4D). PDGF-AA
201	(Figure 4F) and VEGF-A (Figure 4H) were expressed mainly in endothelial and
202	epithelial cells.
203	
204	Effects of both steroid and nintedanib before and after administration of bleomycin:
205	Histopathological analysis, and collagen concentrations in BAL fluid
206	
207	Finally, we performed histopathological analysis on D15 of treatment with both steroid
208	and nintedanib before and after administration of bleomycin (Figure. 5A to Figure.5H).
209	Ashcroft score (Figure. 5I) was not reduced in Group 3 (3.8 ± 1.3) or Group 4 (4.1 ± 1.3)
210	compared with Group 2 (4.6 \pm 1.1). In addition, concentration of collagen (Figure. 5J) in
211	BAL fluid was not reduced in Group 3 (11.1±4.2) or Group 4 (10.2±4.0) compared with
212	Group 2 (12.3±6.8).

214 **Discussion**

In this study, pretreatment of mice with pulmonary fibrosis with nintedanib before 215 216 administration of bleomycin, but not after administration of bleomycin, reduced the 217 Ashcroft score, decreased collagen and TGF- β 1 in BAL fluid was seen to be associated 218 with a decrease in lung fibrosis. The pretreatment with both nintedanib and steroid 219 exacerbated lung fibrosis in bleomycin-induced pulmonary fibrosis model mice 220 compared with pretreatment with nintedanib only. 221 Bleomycin-induced lung fibrosis is a widely used animal model of pulmonary fibrosis ²⁴⁾. Intratracheal administration of bleomycin induces acute alveolitis and 222 interstitial inflammation, characterized by sequential recruitment of leucocytes in the 223 224 first week, followed by fibrotic responses associated with fibroblast proliferation and 225 synthesis of extracellular matrix in the second week 25). Steroids have anti-inflammatory effects and nintedanib has anti-fibrotic effects ^{19, 26)}. We 226 227 demonstrated the effect of nintedanib, which has anti-fibrotic function, in mice with bleomycin-induced pulmonary fibrosis and then showed that bleomycin-induced 228 pulmonary fibrosis was reduced by pretreatment with nintedanib before administration 229

230	of bleomycin, but not by treatment with nintedanib after administration of bleomycin.
231	The results were similar to those reported by Lutz et al. ²⁷⁾ . Fibroblasts are thought to
232	proliferate once activated and this cannot be suppressed. However, we demonstrated
233	that the concentration of TGF- β 1 in BAL fluid decreased with the extent of lung fibrosis.
234	Conversely, FGF2 was not detected despite the presence of lung fibrosis. However, IHC
235	of lung tissues showed clearly that FGF2 was also expressed in fibroblasts. Depending
236	on the type, cytokines may not be detected in BAL. In addition, nintedanib had no
237	effect on PDGF-AA and VEGF-A in BAL fluid. PDGF and VEGF can be produced by
238	fibroblasts, but they are also produced in large amounts by endothelial cells, epithelial
239	cells, and macrophages 28, 29). This suggests that even if both the activity and
240	proliferation of fibroblasts was suppressed by nintedanib, the cytokine concentration in
241	BAL was not affected. In addition, the treatment of nintedanib before and after
242	administration with bleomycin had no effect on the number of total cells, including
243	macrophages, lymphocytes, neutrophils and eosinophils in BAL (data not shown).
244	Clinically, it is desirable to begin administering nintedanib from the period when
245	fibroblast activity is as low as possible. Nintedanib, which is a TKI that acts via VEGF,

246	PDGF, and FGF receptors expressed on lung fibroblasts, may have suppressed
247	subsequent TGF-B1 and FGF2 production by directly suppressing fibroblast activity and
248	proliferation, regardless of inflammatory cells. In addition, the single treatment with
249	nintedanib before administration of bleomycin without the subsequent treatment with
250	nintedanib after administration of bleomycin did not suppress pulmonary fibrosis (data
251	not shown). This result indicates that treatment with nintedanib is optimal by continuous
252	administration.
253	When treating pulmonary fibrosis, it is important to control inflammation and
254	subsequent fibrosis. Steroids act on lymphocytes and macrophages to suppress
255	inflammatory cytokines and exert anti-inflammatory effects ^{30, 31}). However, there are
256	many negative reports about the effectiveness of steroids in ameliorating human IPF 32 ,
257	³³⁾ . In addition, studies in murine models showed that treatment with steroids did not
258	suppress lung fibrosis ^{34, 35)} . The effectiveness of combining steroids with antifibrotic
259	drugs in human IPF is also unclear. For this reason, we analyzed the effectiveness of a
260	human antifibrotic drug and steroid in similar amounts using the bleomycin mouse
261	model. However, the results showed that the combinations of various nintedanib doses

262	and steroid could not suppress pulmonary fibrosis. Thus, pulmonary fibrosis aggravated
263	by the single-agent administration of nintedanib was observed to be aggravated by the
264	combined use of both agents after the administration of bleomycin, regardless of
265	pretreatment with steroid. These findings indicate that this combined use after the
266	induction of inflammation may not inhibit pulmonary fibrosis. Although the detailed
267	mechanism is unknown, it is considered that the steroid may reduce the affinity of
268	nintedanib for fibroblasts or this may be reduced by interaction between the drugs. In
269	addition, although the dose of steroid was relatively high in this study, the effect on
270	pulmonary fibrosis may be affected by the administration of a small dose of steroid.
271	In conclusion, nintedanib may be useful when administered early in patients with
272	pulmonary fibrosis. Further, clinically, it is considered that a combination of nintedanib
273	and steroid should be used with sufficient caution from the viewpoint of effects on
274 275	pulmonary fibrosis and side effects.
276	Acknowledgements
277	The authors would like to thank S. Sekiguchi, S. Ohno, K. Fukuda, K. Tsujikado, A.
278	Yamamoto, Y. Eda, A. Hara, H. Tanaka, and M. Nomaguchi at the Department of
279	Respiratory Medicine and Clinical Immunology, Dokkyo Medical University Saitama

280	Medical Center, for their excellent technical assistance.
281 282 283 284	Conflict of interest: All authors have no conflict of interest.
285	Abbreviations:
286	IPF: idiopathic pulmonary fibrosis, IIPs: idiopathic interstitial pneumonias, TGF:
287	transforming growth factor, EMT: epithelial-mesenchymal transition, FVC: forced vital
288	capacity, TNF: tumor necrosis factor, TKI: tyrosine kinase inhibitors, VEGF: Vascular
289	endothelial growth factor, PDGF: platelet-derived growth factor, FGF: fibroblast growth
290	factor, MDD: minimum detectable dose, BAL: bronchoalveolar lavage, HE:
291	hematoxylin and eosin, EM: Elastica-Masson
292	
293	References
294	1. Scriabine A, Rabin DU: New developments in the therapy of pulmonary fibrosis
295	Adv Pharmacol 57 : 419-464, 2009.
296	2. Ballester B, Milara J, Cortijo J: Idiopathic pulmonary fibrosis and lung cancer:
297	mechanisms and molecular targets. Int J Mol Sci 20 : 593, 2019.

298	3.	Ohkouchi S, Ono M, Kobayashi M, et al: Myriad functions of stanniocalcin-1
299		(STC1) cover multiple therapeutic targets in the complicated pathogenesis of
300		idiopathic pulmonary fibrosis (IPF). Clin Med Insights Circ Respir Pulm Med
301		9 (Suppl 1) : 91-96, 2015.
302	4.	Selman M, Thannickal VJ, Pardo A, et al: Idiopathic pulmonary fibrosis:
303		pathogenesis and therapeutic approaches. Drugs 64 : 405-430, 2004.
304	5.	Vigeland CL, Hughes AH, Horton MR: Etiology and treatment of cough in
305		idiopathic pulmonary fibrosis. Respir Med 123 : 98-104, 2017.
306	6.	Miki K, Maekura R, Miki M, et al: Exertional acidotic responses in idiopathic
307		pulmonary fibrosis: The mechanisms of exertional dyspnea. Respir Physiol
308		Neurobiol 185 : 653-658, 2013.
309	7.	Felton VM, Borok Z, Willis BC: N-acetylcysteine inhibits alveolar
310		epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 297 :
311		L805-12, 2009.
312	8.	Willis BC, Borok Z: TGF-beta-induced EMT: Mechanisms and implications for
313		fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293 : L525-534, 2007.

- 314 9. Upagupta C, Shimbori C, Alsilmi R, et al: Matrix abnormalities in pulmonary
- 315 fibrosis. Eur Respir Rev **27** : 180033, 2018.
- 316 10. George PM, Patterson CM, Reed AK, et al: Lung transplantation for idiopathic
- 317 pulmonary fibrosis. Lancet Respir Med 7 : 271-282, 2019.
- 318 11. Xaubet A, Serrano-Mollar A, Ancochea J: Pirfenidone for the treatment of idiopathic
- 319 pulmonary fibrosis. Expert Opin Pharmacother **15** : 275-281, 2014.
- 320 12. Cottin V: Changing the idiopathic pulmonary fibrosis treatment approach and
- 321 improving patient outcomes. Eur Respir Rev **21** : 161-167. 2012.
- 322 13. Maher TM: Pirfenidone in idiopathic pulmonary fibrosis. Drugs Today (Barc) 46 :
- 323 473-482, 2010.
- 324 14. Varone F, Sgalla G, Iovene B, et al: Nintedanib for the treatment of idiopathic
- 325 pulmonary fibrosis. Expert Opin Pharmacother **19** : 167-175, 2018.
- 326 15. Wollin L, Distler JHW, Redente EF, et al: Potential of nintedanib in treatment of
- 327 progressive fibrosing interstitial lung diseases. Eur Respir J **54** : 1900161, 2019.

328	16. Naim R, Chang RC, Sadick H, et al. Effect of vascular endothelial growth factor on
329	fibroblasts from external auditory canal cholesteatoma. Arch Med Res 36 : 518-523,
330	2005.
331	17. Grazul-Bilska AT, Luthra G, Reynolds LP, et al: Effects of basic fibroblast growth
332	factor (FGF-2) on proliferation of human skin fibroblasts in type II diabetes mellitus.
333	Exp Clin Endocrinol Diabetes. 110 : 176-181, 2002.
334	18. Lu J, Shi J, Gui B, et al: Activation of PPAR-γ inhibits PDGF-induced proliferation
335	of mouse renal fibroblasts. Eur J Pharmacol 789 : 222-228, 2016.
336	19. Wind S, Schmid U, Freiwald M, et al: Clinical pharmacokinetics and
337	pharmacodynamics of nintedanib. Pharmacokinet 58 : 1131-1147, 2019.
338	20. Prashanth Goud M, Bale S, Pulivendala G, et al: Therapeutic effects of nimbolide,
339	an autophagy regulator, in ameliorating pulmonary fibrosis through attenuation of
340	TGF- β 1 driven epithelial-to-mesenchymal transition. Int Immunopharmacol 75 :
341	105755, 2019.
342	21. Tokuda A, Itakura M, Onai N, et al: Pivotal role of CCR1-positive leukocytes in

343 bleomycin-induced lung fibrosis in mice. J Immunol **164** : 2745-2751, 2000.

 pulmonary fibrosis on a numerical scale. J Clin Pathol 41: 467-70, 1998. 23. Henderson NC, Mackinnon AC, Farnworth SL, et al: Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172 : 288-298, 2008. 24. Walters DM, Kleeberger SR: Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protoc Pharmacol Mar; Chapter 5: Unit 5.46, 2008. 25. Monica L, Silvia F, Enrico S, et al: Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016. 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal anti-drugs. Chem Rev 108 : 5131-5145, 2008. 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	344	22. Ashcroft T, Simpson JM, Timbrell V: Simple method of estimating severity of
 23. Henderson NC, Mackinnon AC, Farnworth SL, et al: Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172 : 288-298, 2008. 24. Walters DM, Kleeberger SR: Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protoc Pharmacol Mar;Chapter 5:Unit 5.46, 2008. 25. Monica L, Silvia F, Enrico S, et al: Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016. 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal anti-drugs. Chem Rev 108 : 5131-5145, 2008. 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	345	pulmonary fibrosis on a numerical scale. J Clin Pathol 41 : 4 67-70, 1998.
 secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172 : 288-298, 2008. 24. Walters DM, Kleeberger SR: Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protoc Pharmacol Mar;Chapter 5:Unit 5.46, 2008. 25. Monica L, Silvia F, Enrico S, et al: Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016. 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal anti-drugs. Chem Rev 108 : 5131-5145, 2008. 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	346	23. Henderson NC, Mackinnon AC, Farnworth SL, et al: Galectin-3 expression and
 288-298, 2008. 24. Walters DM, Kleeberger SR: Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protoc Pharmacol Mar;Chapter 5:Unit 5.46, 2008. 25. Monica L, Silvia F, Enrico S, et al: Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016. 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal anti-drugs. Chem Rev 108 : 5131-5145, 2008. 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	347	secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172 :
 24. Walters DM, Kleeberger SR: Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protoc Pharmacol Mar; Chapter 5: Unit 5.46, 2008. 25. Monica L, Silvia F, Enrico S, et al: Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016. 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal anti-drugs. Chem Rev 108 : 5131-5145, 2008. 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	348	288-298, 2008.
 fibrosis. Curr Protoc Pharmacol Mar; Chapter 5: Unit 5.46, 2008. 25. Monica L, Silvia F, Enrico S, et al: Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016. 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal anti-drugs. Chem Rev 108 : 5131-5145, 2008. 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	349	24. Walters DM, Kleeberger SR: Mouse models of bleomycin-induced pulmonary
 351 25. Monica L, Silvia F, Enrico S, et al: Ajulemic acid exerts potent anti-fibrotic effect 352 during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016. 353 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal 354 anti-drugs. Chem Rev 108 : 5131-5145, 2008. 355 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	350	fibrosis. Curr Protoc Pharmacol Mar; Chapter 5: Unit 5.46, 2008.
 during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016. 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal anti-drugs. Chem Rev 108 : 5131-5145, 2008. 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	351	25. Monica L, Silvia F, Enrico S, et al: Ajulemic acid exerts potent anti-fibrotic effect
 353 26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal 354 anti-drugs. Chem Rev 108 : 5131-5145, 2008. 355 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	352	during the fibrogenic phase of bleomycin lung. Respir Res 17 : 49, 2016.
 anti-drugs. Chem Rev 108 : 5131-5145, 2008. 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of 	353	26. Khan MO, Lee HJ: Synthesis and pharmacology of anti-Inflammatory steroidal
355 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of	354	anti-drugs. Chem Rev 108 : 5131-5145, 2008.
	355	27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of
356 the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J	356	the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J
	357	Pharmacol Exp Ther 349 : 209-220, 2014.
357 Pharmacol Exp Ther 349 : 209-220, 2014.	358	28. Coultas L, Chawengsaksophak K, Rossant J: Endothelial cells and VEGF in
 357 Pharmacol Exp Ther 349 : 209-220, 2014. 358 28. Coultas L, Chawengsaksophak K, Rossant J: Endothelial cells and VEGF in 	359	vascular development. Nature 438 : 937-945, 2005.
356 the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J	355 356	 27. Lutz W, Isabelle M, Valérie Q, et al: Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J
	357	Pharmacol Exp Ther 349 : 209-220, 2014.
357 Pharmacol Exp Ther 349 : 209-220, 2014.	358	28. Coultas L, Chawengsaksophak K, Rossant J: Endothelial cells and VEGF in
 357 Pharmacol Exp Ther 349 : 209-220, 2014. 358 28. Coultas L, Chawengsaksophak K, Rossant J: Endothelial cells and VEGF in 	359	vascular development. Nature 438 : 937-945, 2005.

- 360 29. James CB. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine &
- 361 Growth Factor Reviews **15** : 255-273, 2004.
- 362 30. Guo-W, Yi S, Yi-Jun Z, et al: Glucocorticoid attenuates acute lung injury through
- induction of type 2 macrophage. J Transl Med **15** : 181, 2017.
- 364 31. Barnes PJ. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms.
- 365 Clin Sci (Lond) **94** : 557-572, 1998.
- 366 32. Gay SE, Kazerooni EA, Toews GB, et al: Idiopathic pulmonary fibrosis: Predicting
- 367 response to therapy and survival. Am J Respir Crit Care Med 157 : 1063-1072,
- **368 1998**.
- 369 33. Flaherty KR, Toews GB, Lynch JP, et al: Steroids in idiopathic pulmonary fibrosis:
- 370 A prospective assessment of adverse reactions, response to therapy, and survival.
- 371 Am J Med **110** : 278-282, 2001.
- 372 34. Hosoya T: Steroid resistance and lung-tissue cytokines in experimental
- 373 bleomycin-induced lung fibrosis. Nihon Kyobu Shikkan Gakkai Zasshi **35** : 766-775,
- 374 1997.

375	35. Tamagawa K, Taooka Y, Maeda A, et al: Inhibitory effects of a lecithinized
376	superoxide dismutase on bleomycin-induced pulmonary fibrosis in mice. Am J
377	Respir Crit Care Med 161 : 1279-1284, 2000.

379 Figure legends

380 Figure 1; Effects of treatment with nintedanib before and after administration of 381 bleomycin in mice. Saline (bleomycin[-]) (Group 1) or bleomycin sulfate 382 (bleomycin[+]; 5 mg/kg body weight (Groups 2, 3, and 4) was given by intratracheal 383 administration to mice on D1. Nintedanib (3 mg/kg body weight) was given by 384 transesophageal administration before (D0) (Group 3) or after (D2) (Group 4) 385 intratracheal administration of bleomycin in mice. As a control, saline was given by 386 transesophageal administration after (D2) (Group 2) intratracheal administration of 387 bleomycin. Subsequently, nintedanib (Groups 1, 3, and 4) or saline (Group 2) was 388 administered daily, twice a day from D2 to D6 and from D8 to D13. Nint; nintedanib, 389 BLM; bleomycin, BALF; bronchoalveolar lavage fluid, ELISA; Enzyme-Linked 390 Immuno Sorbent Assay.

392 Figure 2; Effects of treatment with both nintedanib and steroid before and after 393 administration of bleomycin in mice. Figure 2 shows the study protocols. Group 2, 3, 394 and 4 were administered bleomycin to induce pulmonary fibrosis. Saline (bleomycin[-]) 395 (Group 1) or bleomycin sulfate (bleomycin[+]; 5 mg/kg body weight) (Group 2, 3, and 396 4) was given by intratracheal administration to mice on D1. Both nintedanib (3 mg/kg body weight) and dexamethasone (0.1 mg/kg body weight) was given by 397 398 transesophageal administration before (D0) (Group 3) or after (D2) (Group 4) 399 intratracheal administration of bleomycin. As a control, saline was given by 400 transesophageal administration after (D2) (Group 2) intratracheal administration of 401 bleomycin. Subsequently, both nintedanib and dexamethasone (Groups 1, 3, and 4) or 402 saline (Group 2) were given daily, twice and once a day, respectively, from D2 to D6 403 and from D8 to D13. Nint; nintedanib, Dex; dexamethasone, BLM; bleomycin, BALF; 404 bronchoalveolar lavage fluid.

405

406

407	Figure 3; Histopathological analysis [A to I] and collagen concentrations [J], TGF-β1
408	[K], VEGF-A [L], and PDGF-AA [M] in BAL fluid on D15 to determine the effects of
409	nintedanib before and after administration of bleomycin in mice. For histopathological
410	analysis, lung sections were stained with HE [A, C, E, G] and EM [B, D, F, H]. Group1;
411	[A], [B], Group2; [C], [D], Group3; [E], [F], Group4; [G], [H]. Scale bar: 100 μm.
412	Quantification of lung fibrosis [I] in lung tissue by score. Concentrations (ug/ml) of
413	collagen in BAL fluid [J]. P values indicate comparisons between each group. Data are
414	means \pm SD for each of 6 to 11 mice. NS, non-significance. N.D, not detected.
415	
416	Figure 4; Immunostaining analysis (TGF-B1 [A], FGF2 [C], PDGF-AA [E], and
417	VEGF-A [G]) on D15 after administration of bleomycin. Scale bar: 20 μ m, or 50 μ m. As
418	controls, immunostaining analysis of TGF- β 1 [B], FGF2 [D], PDGF-AA [F], and

419 VEGF [H] is shown as negative results in which primary antibody were absent.

420

421 Figure 5; Histopathological analysis [A to I] and collagen concentrations [J] in BAL
422 fluid on D15 for the effects of both steroid and nintedanib before and after

- 423 administration of bleomycin. For histopathological analysis, lung sections were stained
- 424 with HE [A, C, E, G] and EM [B, D, F, H]. Group1; [A], [B], Group2; [C], [D],
- 425 Group3; [E], [F], Group4; [G], [H]. Scale bar: 100 μm. Quantification of lung fibrosis
- 426 [I] in lung tissue by score. Concentrations (ug/ml) of collagen in BAL fluid [J]. Data are
- 427 means \pm SD for each of the 9 to 11 mice. NS, non-significant.