1	Title: Effects of short-term calorie restriction on circulating DPP-4/sCD26 concentrations and body
2	composition in patients with type 2 diabetes.
$3 \\ 4 \\ 5$	Type of manuscript: Original article for Diabetology International
6	Mototaka Yamauchi ¹ , Takafumi Tsuchiya ¹ , Kohzo Takebayashi ¹ , Toshihiko Inukai ^{1,2} , and Koshi
7	Hashimoto ¹ .
8	
9	1: Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical
10	Center, 2-1-50, Minami-Koshigaya, Koshigaya, Saitama 343-8555, Japan.
11	2: Department of Internal Medicine, Seibu General Hospital, 884, Kamiookubo, Sakura-ku, Saitama,
12	Saitama 333-0824, Japan.
13	
14	Address all correspondence to:
15	Mototaka Yamauchi M.D.
16	Department of Diabetes, Endocrinology and Hematology
17	Dokkyo Medical University Saitama Medical Center
18	2-1-50, Minami-Koshigaya, Koshigaya, Saitama 343-8555, Japan.
19	Tel: +81-48-965-1111, Fax: +81-48-965-1127
$\begin{array}{c} 20\\ 21 \end{array}$	Email: mototaka@dokkyomed.ac.jp

22 Abstract

23	Previous studies have shown that dipeptidyl peptidase (DPP) -4, is released from adipocytes in
24	a differentiation-dependent manner and a marker for insulin resistance in obese individuals who have
25	particularly high circulating DPP-4/soluble CD26 (sCD26) concentrations. In this study, we have
26	evaluated the effects of short-term hospitalization with calorie restriction on body composition and
27	circulating DPP-4/sCD26 concentrations in patients with type 2 diabetes. A total of 47 Japanese adults
28	with type 2 diabetes were recruited to the study (age; 56.6 ± 13.0 years, body mass index (BMI); 27.3 ± 5.6
29	kg/m ²). Body composition, circulating DPP-4/sCD26 concentrations and metabolic parameters were
30	assessed upon admission and at discharge from hospital (average of the period: 13.0 ± 2.5 days). Visceral
31	fat area (VFA) was also assessed by dual impedance method. During hospitalization, there was a
32	significant reduction in body weight, BMI, lean body mass, VFA and circulating DPP-4/sCD26
33	concentrations, but not in body fat mass. Fasting circulating DPP-4/sCD26 concentrations were
34	significantly correlated with fasting insulin, aspartate aminotransferase, γ -glutamyltransferase (γ -GTP)
35	levels, and HOMA-IR ($r = 0.477, 0.423, 0.415, 0.548$, respectively), but not with VFA ($r = -0.056$) by liner
36	regression analyses at base line. It was also observed a positive correlation between changes in circulating
37	DPP-4/sCD26 concentrations and γ -GTP level, HOMA-IR, and a negative correlation between the changes

38	in circulating DPP-4/sCD26 concentrations and VFA significantly ($r = 0.300, 0.633, -0.343$, respectively).
39	In conclusion, our observations suggest that liver enzymes as well as VFA might be associated with the
40	response of DPP-4/sCD26 concentrations.
41	
42	Key words: DPP-4, soluble CD26, type 2 diabetes, body composition, visceral fat.
43	
44	
45	

46 Introduction

47	Both obesity and type 2 diabetes are associated with insulin resistance [1]. Chronic nutrient
48	excess leads to visceral adipose tissue expansion and dysfunction in an active process that involves the
49	adipocytes, their supporting matrix, and immune cell infiltrates [2]. Visceral adipose tissue secretes a
50	number of adipokines and cytokines leading to a proinflammatory, procoagulant and insulin resistance
51	collectively known as the metabolic syndrome [3]. Thus, greater visceral adiposity is associated with
52	subsequent insulin resistance [4-6]. However, there are several studies to report that subcutaneous fat
53	accumulation is more closely related to insulin resistance in general and diabetic population [7-11].
54	Although normalizing overweight should lead to improve metabolic disorders, such as type 2 diabetes,
55	dyslipidemia and hypertension, the weight loss is often accompanied by a loss in lean body mass [12].
56	Therefore, it should be important to consider a change in each component of the body composition as well
57	as visceral adipose fat, when we investigate whether those components would be associated with insulin
58	resistance and glucose metabolism.
59	Metabolic syndrome is associated with abdominal obesity, dyslipidemia, inflammation, insulin
60	resistance or full-blown diabetes, and risk of developing cardiovascular diseases [3]. The visceral fat area
61	(VFA) has been quantitatively evaluated by computed tomography (CT) or magnetic resonance imaging

62	(MRI) until several years ago. However, these methods have some problems such as risk of radiation,
63	higher costs and they also require radiologists' cooperation, which comprises an obstacle in the prevention,
64	improvement and treatment of lifestyle related diseases. Recently, a dual bioelectrical analysis (Dual
65	BIA) that can determine VFA by measuring truncal impedance and surface impedance at the abdomen
66	separately has been developed. As the change in estimated VFA by Dual BIA is highly correlated with
67	that by CT, Dual BIA is useful and important for the early detection and prevention cardiovascular risks
68	and evaluation of effectiveness of weight reduction therapy in obese patients [13].
69	Dipeptidyl peptidase (DPP)-4 is also known as cell surface antigen CD26 that has a
70	costimulatory function in the immune system [14]. A soluble form of CD26 (sCD26), which lacks the
71	cytoplasmic tail and transmembrane domain, is found in serum and it possesses DPP-4/sCD26 enzymatic
72	activity that removes X-Pro and X-Ala dipeptides from substrates [15]. DPP-4/CD26 gene is widely
73	expressed in many organs, including adipose and liver tissues [16]. Previous studies have shown that
74	DPP-4/sCD26 is released from adipocytes in a differentiation-dependent manner [17] and a marker for
75	insulin resistance in obese individuals, who have particularly high concentrations of circulating DPP-
76	4/sCD26 [18]. On the other hand, the activity of serum DPP-4/sCD26 and the expression level of DPP-
77	4/CD26 in liver were correlated with histopathological grade of nonalcoholic steatohepatitis (NASH) and

78 hepatosteatosis [19]. Moreover, mice lacking DPP-4 displayed a protective effect from diet-induced

79 hepatic steatosis and insulin resistance [20].

80	Interestingly, high circulating DPP-4/sCD26 concentrations may be associated with reduced
81	efficacy of a DPP-4 inhibitor, sitagliptin [21]. It is possible that reduction in circulating DPP-4/sCD26
82	concentrations may enhance the efficacy of incretin related agents. In this study, our purpose is to evaluate
83	the changes in each component of body composition, including those in VFA measured by Dual BIA, under
84	short-term hospitalization with calorie restriction and the effects on insulin secretion and sensitivity, lipid
85	metabolism and circulating DPP-4/sCD26 concentrations in type 2 diabetic patients, thereby specifying an
86	influence factor which influences the response of DPP-4/sCD26 concentrations.

88 Materials and methods

89 Study population

90	All subjects were adult Japanese with type 2 diabetes who underwent hospitalization for
91	glycemic control. The protocol of the following studies was approved by the ethical committee on human
92	research at Dokkyo Medical University Saitama Medical Center (approval number: 1431) according to
93	the Declaration of Helsinki. Written informed consent was obtained from all subjects prior to enrollment.
94	The sample size was calculated as follows; suppose one wishes to detect a simple correlation r
95	(r=0.4) of N observations. Using a two-sided test, 5% significance level test (α =0.05) with 80% power
96	(β =0.2), the required sample size is approximate 47 (n=47) [22]. A total of 47 patients were recruited
97	to this study. They were eligible to participate if they were ≥ 20 years old and had inadequate glycemic
98	control (Hemoglobin A1c (HbA1c) ≥7.0%) required medical care and self-management education under
99	hospitalization. Subjects who had already been diagnosed with type 1 diabetes, gestational diabetes and
100	diabetes in pregnancy, and who had any acute complications such as diabetic ketoacidosis were excluded
101	from the study.
102	

103 Study protocol

104	All subjects were placed under calorie restriction with 25 to 30 kcal per kilogram (kg) of ideal
105	body weight, corresponding to body mass index (BMI) of 22, per day (carbohydrate: 50-60% of total
106	calories) during hospitalization. Body composition, circulating DPP-4/sCD26 concentrations and
107	hemodynamic parameters were assessed upon admission and at discharge from hospital. After overnight
108	fasting, blood samples were obtained from each subject and metabolic parameters were measured. Body
109	composition was assessed by bioelectrical impedance analysis using multi frequency segmental body
110	composition analyzer, MC-780 (Tanita corporation, Tokyo, Japan). Abdominal VFA was also assessed by
111	dual impedance method using visceral fat monitor system, HDS-2000 DUALSCAN (Omron Healthcare
112	Co., Ltd., Kyoto, Japan). Circulating DPP-4/sCD26 concentrations were measured with enzyme-linked
113	immunosorbent assay kit (Human sCD26 platinum ELISA; Bender MedSystems GmbH, Vieena, Austria).
114	Fasting plasma glucose (FPG) was evaluated using Glucose Auto Stat GA1160® (Arkray, Kyoto, Japan).
115	HbA1c was evaluated by Norudia N HbA1c (Sekisui Medical Inc., Tokyo, Japan) and the normal range
116	was 4.5% to 6.2% [NGSP: national glycohemoglobin standardization program]. Serum total cholesterol
117	(TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and
118	serum triglyceride (TG) were measured using enzymatic assays. The Determiner L TC II® and
119	Determiner L TG® reagents (Kyowa Medics, Tokyo, Japan) were used for measurements of TC and TG,

120	respectively. HDL-C and LDL-C were directly measured by Cholestest N HDL-C® and Cholestest
121	LDL® (Daiichi Pure Chemicals, Tokyo, Japan), respectively. Fatty acids including malondialdehyde-
122	modified LDL (MDA-LDL), remnant like particles cholesterol (RLP-C), dihomo γ-linolenic acid (DHLA),
123	and arachidonic acid (AA) were assessed using the gas-chromatograph method (SRL inc. Tokyo, Japan).
124	Plasma insulin was measured by a chemiluminescent enzyme immunoassay (CLEIA) using the lumipulse
125	Presto Insulin Kit ® (Fujirebio, Tokyo, Japan). HOMA-IR was used as an indicator of insulin resistance
126	and was calculated as follows: HOMA-IR = FPG (mg/dL) × fasting immunoreactive insulin (μ U/mL)/405
127	[23].
128	
129	Statistics
130	Data are expressed as the mean \pm SD. Statistical evaluation of the differences between two
131	groups was performed by unpaired t-test. The relationships between fasting circulating DPP-4/sCD26
132	concentrations and metabolic and hemodynamic parameters were examined by linear regression and
133	Spearman's correlation coefficient analyses. For multiple regression analyses, we used the stepwise
134	regression method to find a model that is appropriate for these data. Serious multicollinearity was not
135	detected among included factors (Variance inflation factors <10). Statistical analyses were performed

- 136 using IBM SPSS Statictics 25 (IBM, Armonk, NY, USA) and R version 3.0.2 (R Foundation for Statistical
- 137 Computing, <u>http://www.r-project.org/</u>). All P-values were two-tailed.
- 138

139 Results

140	Changes in various variables at baseline and at 2 weeks after hospitalization in patients with
141	type 2 diabetes are presented in Table 1. During the period, a significant decrease was obtained in FPG,
142	fasting immunoreactive insulin (IRI), fasting C-peptide and HOMA-IR by the optimization of the treatment
143	for diabetes including the calorie restriction. A significant decrease was also obtained in body weight,
144	BMI, VFA and lean body mass. However, no significant changes were observed in body fat mass and
145	body fat weight during the period. We also found that the circulating DPP-4/sCD26 concentrations were
146	significantly decreased after a 2 week-hospitalization (Table 2). As shown in Table 1, administration of
147	sodium/glucose cotransporter 2 (SGLT2) inhibitors was initiated for 7 patients with diabetes. A recent
148	study has demonstrated that a SGLT2 inhibitor, dapagliflozin, reduced serum levels of DPP-4/sCD26 in
149	people with Type 2 diabetes [24]. In this study, significant reductions of DPP-4/sCD26 concentrations
150	were observed in both groups with and without administration of SGLT2 inhibitors during the
151	hospitalization (with SGLT2 inhibitor: at baseline 1161.3±176.0 ng/ml, after 2 weeks 900.4±143.9 ng/ml,
152	P=0.04, without SGLT2 inhibitor: at baseline 973.4±416.9 ng/ml, after 2 weeks 890.5±430.8 ng/ml,
153	P=0.03). Interestingly, changes of DPP-4/sCD26 concentrations were greater in a group with SGLT-2
154	inhibitors than in that with SGLT-2 inhibitors, however this difference was not significant (P=0.09). Then,

155there was a significant reduction in γ -glutamyltransferase (γ -GTP), LDL-C, HDL-C, TG, MDA-LDL,

156	RLP-C, DHLA, and AA after a 2 week-hospitalization.
157	At baseline analysis, circulating DPP-4/sCD26 concentrations were positively correlated with
158	AST, γ-GTP, fasting IRI levels and HOMA-IR (<i>r</i> =0.423, 0.415, 0.477, 0.548, P=0.004, 0.005, 0.004, 0.001,
159	respectively), but not with abdominal VFA (r =-0.056, P=0.72). There are no significant correlations
160	between circulating DPP-4/sCD26 concentrations and each lipid profile. We performed a stepwise
161	regression analysis that included all significant variables. In a model explaining 45.6% (R^2 =0.456) of the
162	variation of circulating DPP-4/sCD26 concentrations in our 35 patients, HOMA-IR (β =0.308, P=0.05) and
163	γ -GTP (β =0.462, P=0.005) were independent determinants of circulating DPP-4/sCD26 concentrations
164	(Table 3).
165	During hospitalization, changes in circulating DPP-4/sCD26 concentrations were positively
166	correlated with changes in γ -GTP levels and HOMA-IR (<i>r</i> =0.300, 0.633, P=0.04, 0.005, respectively), and
167	negatively correlated with changes in VFA (r =-0.343, P=0.02). There are no significant correlations
168	between changes in circulating DPP-4/sCD26 concentrations and changes in each lipid profiles. We also

170approximately 50% of patients were received insulin injection therapy at the end point of this study. In a

169

performed a stepwise regression analysis that excluded fasting IRI levels and HOMA-IR because

- 171 model explaining 19.9% (R^2 =0.199) of the variation in changes in circulating DPP-4/sCD26 concentrations
- 172 in our 43 patients, VFA (β =-0.302, P=0.05) were independent determinants of changes in circulating DPP-
- 173 4/sCD26 concentrations (Table 4).

175 Discussion

176	In this study, we evaluated that the effects of a 2 week-hospitalization of type 2 diabetic patients
177	on the changes in body composition including VFA and related clinical parameters including circulating
178	DPP-4/sCD26 concentrations. We observed that body weight, BMI and lean body mass were significantly
179	decreased, but body fat mass was not changed. These results indicate that the change in lean body mass,
180	rather than that of body fat mass, may be the major factor, which contributed to body weight loss under the
181	short-term hospitalization with calorie restriction. It may be resulted from the reduction of physical
182	activity during the hospitalization with bed rest, because the physical activity has been shown to be vitally
183	important for maintaining muscle mass and function [25].
184	A previous study has reported that DPP-4/sCD26 expression levels in both subcutaneous and
185	visceral adipose tissues were positively correlated with BMI [18]. However, any significant correlations
186	between the circulating DPP-4/sCD26 concentrations and BMI were not found at baseline or after the
187	hospitalization in this study, suggesting that the circulating DPP-4/sCD26 concentrations may not
188	necessarily reflect local DPP-4/sCD26 expression levels in adipose tissues.
189	It has been also shown that circulating DPP-4/sCD26 concentrations in obese subjects with
190	insulin resistance are higher than those without insulin resistance [18]. Our data showed that the

- 192 changes in circulating DPP-4/sCD26 concentrations were positively correlated with those in HOMA-IR
- 193 during the hospitalization, indicating that the circulating DPP-4/sCD26 concentrations can be one of
- 194 markers for insulin resistance.
- 195A previous report showed that the DPP-4/sCD26 expression in visceral adipose tissue was 196 significantly higher than that in subcutaneous adipose tissue and positively correlated with BMI in non-197 diabetic population [18]. However, in the current study, we found no significant correlation between 198circulating DPP-4/sCD26 concentrations and BMI. There is a possibility that the treatment for diabetes 199 during hospitalization may affect the circulating DPP-4/sCD26 concentrations in our study. Another 200 previous report showed that circulating DPP-4/sCD26 concentrations were positively and specifically 201associated with the accumulation of visceral fat evaluated by CT and the presence of metabolic syndrome 202in 135 men with type 2 diabetes [26]. On the other hand, we could not find any significant association 203 between the baseline circulating DPP-4/sCD26 concentrations and VFA or between the changes in those 204during hospitalization, which might be attributed to the smaller participants in our study. 205Regarding the expression and secretion of DPP-4/sCD26 in liver, a previous study reported that
- 206 the serum DPP-4/sCD26 activity was higher in patients with NASH than controls, and correlated with the

207	histopathological grade and hepatosteatosis but not with DPP-4/CD26 positive staining [19]. Furthermore,
208	another previous study showed that the high circulating DPP-4/sCD26 concentrations were correlated with
209	liver function but not with FPG or HbA1c in nonalcoholic fatty liver disease (NAFLD) [27]. It is
210	suggested that improving NAFLD and NASH by calorie restriction may lead to suppress the expression of
211	DPP-4 in liver, reduce circulating DPP-4/sCD26 concentrations, and ameliorate the efficacy of DPP-4
212	inhibitors. A meta regression analysis also showed that the baseline BMI is significantly correlated with
213	the HbA1c lowering efficacy of DPP-4 inhibitors [28], because obese patients should be under a situation
214	with NAFLD or NASH, thereby with possibly high circulating DPP-4/sCD26 concentrations.
215	It is not clear that how the glucose-lowering effects of DPP-4 inhibitors could be attenuated in
216	patients with elevated circulating DPP-4/sCD26 concentration. There is a possibility that the therapeutic
217	dose of DPP-4 inhibitors may be insufficient to inhibit DPP-4 activity in type 2 diabetic patients with high
218	circulating DPP-4/sCD26 concentrations. Considering another possibility, a negative correlation between
219	circulating DPP-4/sCD26 and postprandial serum C peptide was observed in a previous report [21]. A
220	high circulating DPP-4/sCD26 promotes degradation of active incretin, and might be associated with
221	impaired postprandial insulin secretion.
222	There are several limitations in this study. First, this study was conducted at a single institute.

223	Second, all subjects were diabetic patients with severe hyperglycemia, which were required hospitalization,
224	and healthy subjects were not enrolled. Therefore, the participants enrolled in this study might have
225	relatively severe diabetes and might not be representative of all Japanese diabetic patients. Third, every
226	participant received different treatments. For example, approximate 50% participants received insulin
227	injection therapy and several participants received the treatment of SGLT-2 inhibitor at discharge from the
228	hospital. It may affect varying changes in the body composition during the hospitalization. Fourth, we
229	used HOMA-IR for a marker of insulin resistance, although patients receiving insulin therapy at both
230	baseline and the end of the study were excluded from this analysis. However, there is a possibility that
231	the evaluation of insulin resistance is inaccurately at baseline, because all subjects needed to be hospitalized
232	for glycemic control and showed high fasting glucose levels. Fifth, we have tried to specify an
233	influence factor which influences the response of DPP-4/sCD26 concentrations, but the R-squared value of
234	the multivariate analysis was substantially low. There can be a problem with the regression model and
235	included independent variables did not explain much in the variation of DPP-4/sCD26 concentration.
236	In conclusion, circulating DPP-4/sCD26 concentrations are positively associated with liver
237	enzymes but not with fat mass and VFA. However, changes in circulating DPP-4/sCD26 concentrations
238	are negatively and independently associated with VFA and positively with γ -GTP. Further clinical

239	observations	in	subjects	with	various	metabolic	disorders	should	be	necessary	to	clarify	the	role	of
-----	--------------	----	----------	------	---------	-----------	-----------	--------	----	-----------	----	---------	-----	------	----

- 240 circulating DPP-4/sCD26.
- 241 Data availability.
- 242 The data that support the findings of this study are available from the corresponding author upon reasonable
- 243 request.
- 244
- 245 Acknowledgments: This work was supported in part by Grants-in-Aid for Scientific Research
- 246 (KAKENHI) from the Japan Society for the Promotion of Science (JSPS) [grant Numbers 19K09018
- 247 (K.H.)]; Takeda Science Foundation (K.H.).
- 248
- 249 Compliance with Ethical Standards:
- 250 Author Disclosure Statement: The authors have nothing to disclose.
- 251 Competing interests: The authors declare no competing interests.
- 252 Human rights statement: All procedures followed were in accordance with the ethical standards of the
- 253 responsible committee on human experimentation (the Institutional Review Boards of Dokkyo Medical

- 254 University Saitama Medical Center, approval date: Nov. 19, 2014, approval number: 1431) and with
- 255 Helsinki Declaration of 1964 and later versions.
- 256 Informed consent: All informed consent or substitute for it was obtained from all patients for being
- 257 included in the study.

259 Reference

- 1. Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition. 1997;
 13: 65; discussion 64, 66.
- 262 2. Revelo XS, Luck H, Winer S, Winer DA. Morphological and inflammatory changes in visceral adipose
- tissue during obesity. Endocr Pathol. 2014; 25:93-101.
- 264 3. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006; 444:881-7.
- 265 4. Koh H, Hayashi T, Sato KK, Harita N, Maeda I, Nishizawa Y, Endo G, Fujimoto WY, Boyko EJ,
- 266 Hikita Y. Visceral adiposity, not abdominal subcutaneous fat area, is associated with high blood pressure
- in Japanese men: the Ohtori study. Hypertens Res. 2011; 34:565-72.
- 268 5. Hirose H, Takayama M, Iwao Y, Kawabe H. Effects of Aging on Visceral and Subcutaneous Fat Areas
- and on Homeostasis Model Assessment of Insulin Resistance and Insulin Secretion Capacity in a
- 270 Comprehensive Health Checkup. J Atheroscler Thromb. 2016; 23:207-15.
- 6. DeNino WF, Tchernof A, Dionne IJ, Toth MJ, Ades PA, Sites CK, Poehlman ET. Contribution of
- abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese
- 273 women. Diabetes Care. 2001; 24:925-32.
- 274 7. Gotoh H, Gohda T, Tanimoto M, Gotoh Y, Horikoshi S, Tomino Y. Contribution of subcutaneous fat
- accumulation to insulin resistance and atherosclerosis in haemodialysis patients. Nephrol Dial Transplant.
 2009; 24:3474-80.
- 8. Alba DL, Farooq JA, Lin MYC, Schafer AL, Shepherd J, Koliwad SK. Subcutaneous Fat Fibrosis
- 278 Links Obesity to Insulin Resistance in Chinese Americans. J.Clin.Endocrinol.Metab. 2018; 103:3194-
- **279** 204.
- 9. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM. Relationship of
 generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes. 1996; 45:168493.
- 283 10. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle
 284 composition predict insulin sensitivity independently of visceral fat. Diabetes. 1997; 46:1579-85.

- 11. Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH. Subdivisions of subcutaneous abdominal
 adipose tissue and insulin resistance. Am J Physiol.Endocrinol Metab. 2000; 278:941.
- 287 12. Willoughby D, Hewlings S, Kalman D. Body Composition Changes in Weight Loss: Strategies and
- 288 Supplementation for Maintaining Lean Body Mass, a Brief Review. Nutrients. 2018; 10:
- 289 10.3390/nu10121876.
- 290 13. Yamakage H, Ito R, Tochiya M, Muranaka K, Tanaka M, Matsuo Y, Odori S, Kono S, Shimatsu A,
- 291 Satoh-Asahara N. The utility of dual bioelectrical impedance analysis in detecting intra-abdominal fat
- area in obese patients during weight reduction therapy in comparison with waist circumference and
- 293 abdominal CT. Endocr J. 2014; 61:807-19.
- 14. Matteucci E, Giampietro O. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibitingthe enzyme. Curr Med Chem. 2009; 16:2943-51.
- 296 15. Durinx C, Lambeir AM, Bosmans E, Falmagne JB, Berghmans R, Haemers A, Scharpe S, De Meester
- 297 I. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase
- 298 IV is responsible for the release of X-Pro dipeptides. Eur J Biochem. 2000; 267:5608-13.
- 299 16. Mentzel S, Dijkman HB, Van Son JP, Koene RA, Assmann KJ. Organ distribution of aminopeptidase
- A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem. 1996; 44:445-61.
- 301 17. Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, Kaufman JM,
- 302 Ryden M, Muller S, Hanisch FG, Ruige J, Arner P, Sell H, Eckel J. Dipeptidyl peptidase 4 is a novel
- 303 adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011; 60:1917-25.
- 304 18. Sell H, Bluher M, Kloting N, Schlich R, Willems M, Ruppe F, Knoefel WT, Dietrich A, Fielding BA,
- 305 Arner P, Frayn KN, Eckel J. Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin
- 306 resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care. 2013;
- 307 36:4083-90.
- 308 19. Balaban YH, Korkusuz P, Simsek H, Gokcan H, Gedikoglu G, Pinar A, Hascelik G, Asan E,
- 309 Hamaloglu E, Tatar G. Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann Hepatol. 2007; 6:242-
- 310 50.

- 311 20. Conarello SL, Li Z, Ronan J, Roy RS, Zhu L, Jiang G, Liu F, Woods J, Zycband E, Moller DE,
- 312 Thornberry NA, Zhang BB. Mice lacking dipeptidyl peptidase IV are protected against obesity and
- 313 insulin resistance. Proc Natl Acad Sci U.S.A. 2003; 100:6825-30.
- 314 21. Aso Y, Ozeki N, Terasawa T, Naruse R, Hara K, Suetsugu M, Takebayashi K, Shibazaki M, Haruki
- 315 K, Morita K, Inukai T. Serum level of soluble CD26/dipeptidyl peptidase-4 (DPP-4) predicts the response
- to sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes controlled inadequately by metformin
- and/or sulfonylurea. Transl Res. 2012; 159:25-31.
- 318 22. Lachin JM. Introduction to sample size determination and power analysis for clinical trials. Control
- 319 Clin Trials. 1981; 2:93-113.
- 320 23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model
- 321 assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin
- 322 concentrations in man. Diabetologia. 1985; 28:412-19.
- 323 24. Aso Y, Kato K, Sakurai S, Kishi H, Shimizu M, Jojima T, Iijima T, Maejima Y, Shimomura K, Usui
- 324 I. Impact of dapagliflozin, an SGLT2 inhibitor, on serum levels of soluble dipeptidyl peptidase-4 in
- 325 patients with type 2 diabetes and non-alcoholic fatty liver disease. Int J Clin Pract. 2019; 73: e13335.
- 326 25. Trappe S, Creer A, Minchev K, Slivka D, Louis E, Luden N, Trappe T. Human soleus single muscle
- 327 fiber function with exercise or nutrition countermeasures during 60 days of bed rest. Am J Physiol Regul
- 328 Integr Comp Physiol. 2008; 294:939.
- 329 26. Tanaka S, Kanazawa I, Notsu M, Sugimoto T. Visceral fat obesity increases serum DPP-4 levels in
- 330 men with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2016;116: 1-6.
- 331 27. Firneisz G, Varga T, Lengyel G, Feher J, Ghyczy D, Wichmann B, Selmeci L, Tulassay Z, Racz K,
- 332 Somogyi A. Serum dipeptidyl peptidase-4 activity in insulin resistant patients with non-alcoholic fatty
- 333 liver disease: a novel liver disease biomarker. PLoS One. 2010; 5: e12226.
- 28. Kim YG, Hahn S, Oh TJ, Kwak SH, Park KS, Cho YM. Differences in the glucose-lowering efficacy
- 335 of dipeptidyl peptidase-4 inhibitors between Asians and non-Asians: a systematic review and meta-
- analysis. Diabetologia. 2013; 56:696-708.

Table 1. Clinical characteristics of study population							
	Baseline	After 2 weeks	P-value				
N (male/female)	47 (34/13)						
Age (years)	56.6 ± 13.0						
Height (cm)	165.3 ± 9.5						
Weight (Kg)	75.3 ± 19.6	73.7 ± 18.6	2.11×10 ⁻⁷				
BMI	27.3 ± 5.6	26.8 ± 5.3	8.05×10 ⁻⁸				
Body fat mass (%)	28.8±9.5	28.8±9.2	0.995				
Body fat weight (kg)	22.5±11.3	22.0±10.8	0.11				
Lean body weight (kg)	52.8±12.3	51.7±11.3	0.001				
Visceral fat area (cm ²)	104.0 ± 52.5	96.3±46.2	0.009				
FPG (mg/dl)	172.6 ± 53.2	111.1 ± 17.2	9.57×10 ⁻¹¹				
HbA1c (%)	10.2 ± 2.4						
Fasting IRI (µU/ml)	10.4 ± 7.3***	9.7 ± 5.2*	0.006				
Fasting C-peptide (ng/ml)	2.2 ± 1.3	1.8 ± 1.2**	0.002				
HOMA-IR	4.3 ±3.6***	$2.8 \pm 1.8*$	0.0002				
Diabetic therapy							
DP/BG/TZ/SU/GL/AG/SG	29/20/1/9/1/7/0	32/27/11/4/7/10/7					
INS/GLP-1/NONE	8/1/6	22/3/2					

339 Data are mean \pm SD. NA indicates that data were not available. *: n=18. **:n=44. ***:n=36

340 DP, DPP-4 inhibitors; BG, biguanide; TZ, thiazolidine; SU, sulfonylureas; GL, glinides; AG, α glucosidase

341 inhibitors; SG, SGLT-2 inhibitors; INS, insulin; GLP-1, GLP-1 receptor agonist

Table 2. Changes in circulating DPP-4/sCD26 concentrations and metabolic parameters							
	P-value						
AST (IU/L)	32.3±23.1	30.4±18.9	0.48				
ALT (IU/L)	43.1±38.9	39.9±30.9	0.47				
γ-GTP (IU/L)	59.6±66.9	47.9±51.7	0.004				
LDL-C (mg/dl)	118.0±31.9	104.2 ± 28.8	0.00008				
HDL-C (mg/dl)	41.3±9.3	39.0±8.1	0.004				
TG (mg/dl)	159.2±86.1	133.8±60.5	0.02				
MDA-LDL (U/L)	136.2±49.7	115.2±35.6	0.00003				
RLP-C (mg/dl)	7.4±5.8	5.4±3.4	0.02				
DHLA (µg/ml)	38.4±16.5	30.1±8.4	0.0002				
AA (µg/ml)	207.3±58.9	192.7±45.2	0.003				
EPA (µg/ml)	60.2±35.6	57.2±27.0	0.36				
DHA (µg/ml)	139.8±50.9	137.3±43.7	0.54				
EPA/AA	0.30±0.20	0.31 ± 0.16	0.80				
hsCRP (mg/dl)	0.25±0.34	0.22±0.36	0.90				
DPP-4/sCD26 (ng//ml)	1002.6±393.9	892.0±399.4	0.003				

343 MDA-LDL, malondialdehyde- modified LDL; RLP-C, remnant like particls cholesterol; DHLA, dihomo

344 γ-linolenic acid; AA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

Table 3. Correlation analysis between clinical traits and circulating DPP-4 concentrations (at baseline)							
	Single correlation	on	Multiple regression(n=35)				
Independent parameter	r	Р	β	Р			
BMI	-0.061	0.69	-	-			
Visceral fat area	-0.056	0.72	-	-			
Body fat mass	-0.017	0.91	-	-			
Lean body weight	0.006	0.97	-	-			
AST	0.423	0.004	-	-			
ALT	0.248	0.10	-	-			
γ-GTP	0.415	0.005	0.462	0.005			
IRI	0.477	0.004	-	-			
HOMA-IR	0.548	0.001	0.308	0.05			

Table 4. Correlation analysis between changes in clinical traits and circulating DPP-4 concentrations								
during a 2 week-hospitalization								
	Single correlation	on	Multiple regression(n=43)					
	r	Р	β	Р				
ΔΒΜΙ	0.223	0.13	0.245	0.12				
Δ Visceral fat area	-0.343	0.02	-0.302	0.05				
Δ Body fat mass	-0.056	0.71	-	-				
ΔLean body weight	0.104	0.49	-	-				
ΔΑST	0.067	0.65	-	-				
ΔΑLΤ	0.030	0.84	-	-				
Δγ-GTP	0.300	0.04	0.173	0.27				
ΔIRI	0.366	0.11	Not included	Not included				
ΔHOMA-IR	0.633	0.005	Not included	Not included				