1 ABSTRACT

2	Background: The epidemiology of primary elbow osteoarthritis (PEOA) remains
3	unknown. We aimed to evaluate the prevalence and associated factors of PEOA in a
4	cross-sectional resident cohort from a municipal registry of a Japanese town.
5	Methods: A total of 415 residents over 50 years of age were randomly sampled from a
6	Japanese town and were adjusted for age and gender. Those with diseases that could
7	potentially cause a secondary osteoarthritis of the elbow were excluded. The remaining
8	318 subjects (150 males, 168 females) underwent bidirectional radiography of the
9	elbow. Subjects were diagnosed with PEOA if one of their elbows was Kellgren-
10	Lawrence grade 2 or greater. In addition, motion pain and tenderness at the elbow were
11	examined by orthopedic surgeons. Associated factors for the prevalence of PEOA were
12	statistically analyzed.
13	Results: The prevalence of PEOA was 25.2% (male, 27.3%; female, 23.2%), and the
14	prevalence of symptomatic PEOA was 0.9%. The age-stratified prevalence of PEOA
15	was as follows: 50-59, 6.2% (male, 5.0%; female, 7.3%); 60-69, 15.4% (male, 17.5%;
16	female, 13.7%); 70-79, 29.5% (male, 35.3%; female, 25.0%); 80-89, 55.9% (male,

17	55.6%; female, 56.3%). Age and body mass index (BMI) were revealed as factors that
18	increased PEOA.
19	Conclusions: The prevalence of PEOA in Japanese subjects was 25.2% for those aged
20	50-89 with a mean age of 69.2 years, most of which were asymptomatic OA without
21	motion pain or tenderness at the elbow. Age and BMI increased the prevalence of
22	PEOA. The prevalence of PEOA increased with age, but the disease was self-
23	accommodated by most people.
24	Level of Evidence: Level III, Cross-Sectional Design; Epidemiology Study
25	Keywords: Elbow; osteoarthritis; cohort study; prevalence; risk factors; multivariable

26 analysis; age

27 Introduction

28	Elbow osteoarthritis (EOA) may induce elbow pain, restriction of elbow motion, or
29	ulnar neuropathy. ¹⁸ EOA can be classified into primary and secondary types. There are
30	various causes of secondary elbow arthritis, including posttraumatic arthritis, septic
31	arthritis, crystal-induced arthritis, hemophilia, ochronosis, and rheumatoid arthritis. ¹⁸
32	Primary EOA (PEOA) is defined as other EOA that excludes secondary EOA.
33	Numerous studies have reported the prevalence of OA in other joints: shoulder, 17.4%
34	in the general population with a mean age of 65.2 years, ¹⁰ 16.1% in the general
35	population with a mean age of 71.8 years ¹⁶ ; hip, 0.7% in subjects who visited the clinic
36	with a mean age of 60 years, ¹⁵ 15.7% in the general population with a mean age of 63.9
37	years ²⁵ ; knee, 6.1% in the general population aged 35-74 years, ¹ 33.0% in the general
38	population with a mean age of 72.7 years, ⁴ 63% in the subjects who visited the hospital
39	with a mean age of 61.7 years ²⁴ . To the best of our knowledge, there is only one report
40	that revealed the prevalence of PEOA in a resident cohort with a mean age of 67.2
41	years. ¹⁷ The study reported a prevalence of 52.3% from a resident registry in a Japanese
42	rural community with subjects 40 years or older; however, the study was limited by the

43	following factors: 1) subjects were not sampled by a randomized method, 2) lateral
44	radiograph of the elbow was not taken and thus OA was determined by anteroposterior
45	radiograph alone.
46	The aims of the present study were to investigate the prevalence of PEOA assessed
47	by anteroposterior and lateral radiographs of bilateral elbows and to examine associated-
48	factors of PEOA by multivariable analysis in a cross-sectional cohort study of a
49	Japanese town. We randomly sampled subjects aged 50-89 from the basic resident
50	registry to minimize selection bias. All subjects were examined by orthopedic surgeons
51	to determine whether their elbows were symptomatic or asymptomatic.
52	

53 Materials and Methods

54 Construction of cohort classified by sex and age groups

55	This study was one of several projects in "the Obuse study," a cross-sectional cohort to
56	investigate locomotor function and to extend the healthy life expectancy of the Japanese
57	elderly. ^{6-8,20-22} With a population of 11,326 people (2014), the municipality of Obuse
58	town is located in Nagano prefecture in central Japan. ¹⁴ The employment structure of
59	the town was as follows: primary industry workers, 42.4%; secondary industry, 9.6%;
60	tertiary industry, 47.6%. The primary industry provides raw materials to be made into
61	goods as found in farming and mining, the secondary industry use raw materials to
62	make goods, and the tertiary industry is the service sector of a country's economy.
63	Compared to the Japanese population census in 2015 (primary: 4.0%, secondary:
64	25.0%, tertiary: 71.0%), ¹³ the proportion of tertiary industries was small, and the
65	proportion of primary industries was large. We defined 8 groups by age (50-59, 60-69,
66	70-79, and 80-89) and gender (male and female). Each group was planned to consist of
67	approximately 50 participants for a total of at least 400 subjects.

68	We randomly sampled 1,297 individuals from 5,352 people aged between 50 and 89
69	years in the basic resident registry of Obuse town in 2014. Informational materials on
70	the Obuse study were mailed by municipal workers of Obuse along with a request for
71	participation to residents between 50 and 89 years of age who were randomly selected
72	from the town's population registry by using computer generated random numbers.
73	After providing written consent, 415 subjects were enrolled. Prior to the scheduled
74	examination of subjects, interview questionnaires were mailed to collect demographic
75	data, occupational history, sports history, history of trauma, and medical history (Figure
76	1). The interview questionnaires were subsequently evaluated at the day of the
77	examination. The following subjects were excluded: incomplete questionnaires (n=9);
78	prior history of fractures at the shoulder, arm, or wrist (n=52); arthritis, including
79	rheumatoid arthritis and hyperuricemia (n=29); cerebral apoplexy or infarction (n=8).
80	One subject had histories of upper-extremity fracture and diseases causing arthritis.
81	After these exclusions, 318 subjects were ultimately enrolled (Figure 2). There were
82	307 and 11 right- and left-handed subjects, respectively.

84 Evaluation of EOA

85	All 318 subjects underwent anteroposterior and lateral radiography of the bilateral
86	elbow joints. All radiographic images were assessed by the first author, and the EOA
87	was graded according to the Kellgren-Lawrence (KL) scale.9 According to previous
88	studies, ^{17,29} we defined subject with PEOA as subject having KL grade 2 or greater at
89	the either side of the elbow. The radiographic assessment of KL grade 2 was determined
90	by the presence of definite osteophytes at the medial ulnohumeral joint in
91	anteroposterior radiography and either the coronoid process, coronoid fossa, olecranon,
92	or olecranon fossa in lateral radiography (Figure 3).
93	To check inter and intra- observer reliability of radiographic assessment of KL grade
94	2, two authors (1999) assessed the bilateral elbows of 40 subjects (80 elbows)
95	according to the KL scale, randomly sampled from the 318 enrolled subjects. These
96	initial radiographic assessments were repeated 1 month later by
97	intra-observer reliabilities of the radiographic assessments were calculated by the kappa
98	statistic.

99	All 318 subjects were examined by orthopedic surgeons without prior knowledge of
100	their radiography. Orthopedic surgeons examined subjects about elbow pain during
101	elbow flexion extension motion and checked for tenderness at the humeroradial and
102	humeroulnar joint spaces. Subjects with symptomatic PEOA were defined as those
103	diagnosed as radiographic PEOA with motion pain or tenderness on the same elbow.
104	If the subject exhibited symptomatic PEOA with an asymptomatic contralateral elbow,
105	we categorized the subject as symptomatic PEOA.
106	
107	Associate factors
107 108	Associate factors The candidates of associated factors were as follows: age, gender, body mass index
107 108 109	Associate factors The candidates of associated factors were as follows: age, gender, body mass index (BMI), grip strength, smoking history, engagement in heavy manual work, use of
107 108 109 110	Associate factors The candidates of associated factors were as follows: age, gender, body mass index (BMI), grip strength, smoking history, engagement in heavy manual work, use of vibrating tool, engagement in agricultural labor, and participation in overhead sports
107 108 109 110 111	Associate factors The candidates of associated factors were as follows: age, gender, body mass index (BMI), grip strength, smoking history, engagement in heavy manual work, use of vibrating tool, engagement in agricultural labor, and participation in overhead sports (tennis, baseball or softball, badminton, and volleyball). Grip strength (kg) of bilateral
107 108 109 110 111	Associate factors The candidates of associated factors were as follows: age, gender, body mass index (BMI), grip strength, smoking history, engagement in heavy manual work, use of vibrating tool, engagement in agricultural labor, and participation in overhead sports (tennis, baseball or softball, badminton, and volleyball). Grip strength (kg) of bilateral hands were evaluated using a Jamar Hand Dynamometer (Sammons Preston Rolyan,
107 108 109 110 111 112 113	Associate factors The candidates of associated factors were as follows: age, gender, body mass index (BMI), grip strength, smoking history, engagement in heavy manual work, use of vibrating tool, engagement in agricultural labor, and participation in overhead sports (tennis, baseball or softball, badminton, and volleyball). Grip strength (kg) of bilateral hands were evaluated using a Jamar Hand Dynamometer (Sammons Preston Rolyan, Bolingbrook, IL) and mean grip strength of the bilateral hands was used. Smoking

115	work, use of vibrating tool, engagement in agricultural labor, and participation in
116	overhead sports were classified by answers of 5 years more history of these
117	questionnaire. If subjects had been engaged in carrying objects 10 kg or more at least 10
118	times a week for more than 5 years, they were defined as heavy manual workers (Figure
119	4).
120	

121 Statistical analyses

122	The differences in demographic data between subjects with PEOA and subjects without
123	PEOA were evaluated by the Fisher's exact test or the Welch's t-test. The association
124	between PEOA and age, BMI, grip strength, and smoking history were evaluated using
125	a logistic regression analysis. Subsequently, the relationships between PEOA and
126	gender, heavy manual work, the use of vibrating tool, agricultural labor, and
127	participation in overhead sports were evaluated using the Fisher's exact test. We
128	performed a logistic regression analysis with stepwise method using Akaike's
129	Information Criteria. Statistical analyses were carried out using the JMP®10 (SAS
130	Institute Inc., Cary, NC, USA). The level of significance was set at $P < 0.05$.

131	
132	Results
133	We examined 318 subject and 636 elbows. PEOA was observed in 80 subjects. PEOA
134	was observed in the right elbow alone for 20 subjects, in the left elbow alone for 21
135	subjects, and in both elbows for 39 subjects. PEOA was observed in the dominant hand
136	for 59 elbows and the non-dominant hand for 69 elbows. The number of elbows with
137	PEOA was 119 (18.7%), and these elbows stratified to KL grade were as follows: 44,
138	KL 2; 45, KL 3; 30, KL 4 (Table 1). The inter- and intra-rater reliabilities for PEOA
139	were 0.79 and 0.83, respectively.
140	
141	Demographic data
142	The 8 groups were classified by age and gender. Table 2 shows the demographic data of
143	enrolled subjects.
144	

145 Prevalence of PEOA

146	A total of 80 subjects (25.2%) were classified into the PEOA group. In the PEOA
147	group, there were 41 males (27.3%) and 39 females (23.2%). The distribution of PEOA,
148	stratified by gender and age, is shown in Figure 5. Only 3 out of 80 subjects with PEOA
149	were classified as symptomatic PEOA, all of whom showed tenderness at the
150	radiohumeral joint, and none showed elbow pain on flexion and extension. The
151	remaining 77 subjects with PEOA were classified as asymptomatic PEOA.
152	
153	Associated factors
154	The results regarding the candidate associated factors of the PEOA and non-PEOA
155	groups are summarized in Table 3. In univariate analysis, the age, BMI, grip strength,
156	use of vibrating tool and agricultural labor were significant factors for PEOA. In
157	multivariable analysis, the age, BMI, and the smoking were significant factors (Table
158	4). The prevalence of PEOA increased with age and BMI. On the other hand, the
159	prevalence of PEOA decreased with a longer smoking history.
160	

161 DISCUSSION

162	In this study.	we evaluated antero	oposterior radiogra	aphs of the	elbow joint in 318
	in the starty,				

- 163 subjects who were randomly selected from residents of a Japanese town aged 50 to 89
- 164 years. PEOA was observed in 80 subjects. As a result, the prevalence of PEOA was
- 165 25.2%. The associated factors for the prevalence of PEOA were age, BMI, and
- 166 smoking. The strengths of this research included 1) a randomly selected cohort that was

167 extracted from a basic resident registry with a minimal selection bias, 2) the exclusion

- 168 of secondary EOA from our questionnaire, and 3) the direct examination of the elbow
- 169 joint by orthopaedic surgeons to diagnose whether the disease is symptomatic or
- 170 asymptomatic.

171 Previous studies on the prevalence of PEOA are scarce. In terms of macroscopic

- 172 paleopathological survey of the musculoskeletal system, there are reports from
- 173 excavations in the Czech Republic and Slovenia by Crubezy et al² and France by
- 174 Debono et al.³ The prevalence of EOA was reported to be approximately 20.0% in the
- 175 former and 27.0% in the latter, but secondary EOA were not excluded in these studies
- 176 and thus cannot be compared with this study. To our knowledge, the only study that

177	implements the use of radiographic imaging for a resident cohort is a study by Oya et
178	al. ¹⁷ The subjects of their study were elderly Japanese people living in mountainous
179	areas. The mean age of subjects was 67.2 years old in their study, which was
180	comparable to the present study. However, the prevalence of PEOA was 52.3%, which
181	was higher than our results. Oya et al only performed radiographic imaging of the elbow
182	joint in the anteroposterior view. PEOA osteophytes are usually found in the coronoid
183	process and coronoid fossa on lateral view radiographs ¹² ; therefore, the assessment of
184	lateral view radiographs is essential. Furthermore, Oya et al did not implement
185	randomization of samples for their subjects. Taking account of these differences in
186	study design between the present study and that of Oya et al, the number of PEOA in
187	this study provides a better approximation of its actual measures.
188	In this study, symptomatic PEOA was detected from the presence or absence of
189	motion pain or tenderness under direct examination by an orthopedic surgeon. Three out
190	of 318 subjects (0.9%) were considered symptomatic PEOA. Stanley et al obtained the
191	number of symptomatic EOA with elbow pain or ROM restriction using anteroposterior
192	and lateral radiographs of hospital patients and found that the rate of symptomatic OA

193	in all hospital patients was 2%. ¹⁹ Zhang et al evaluated the anteroposterior and lateral
194	radiographs of 7126 individuals aged 16-90 years in Shanxi Province, China. The
195	imaging was examined by physicians, and they reported that symptomatic EOA
196	accounted for 2.9% of the total study population. ²⁹ In all of these studies, the prevalence
197	of symptomatic EOA was less than 3% of all subjects. On the other hand, Oya et al,
198	symptomatic EOA was reported to be 22.6%. Although the 3 other studies including our
199	present study were conducted with direct examinations by physicians, the study by Oya
200	et al relied on subjective patient-reported questionnaires. According to previous projects
201	in "the Obuse study," Isobe et al ⁸ determined normative values for the QuickDASH
202	questionnaire in the elderly. QuickDASH is a self-administered questionnaire, which
203	consists of a disability/symptom scale of the upper limb. Isobe et al revealed that PEOA
204	was not an associated factor on QuickDASH scores. We believe PEOA was mitigated
205	by self-accommodation of the disease by most people.
206	Age and BMI were associated factors that increased the incidence of PEOA in this
207	study. From a previous study, Soojian et al reported that gender and age were associated
208	factors of PEOA. ¹ In our literature search, we found no reports that examined in

209	statistical analysis regarding associated factors of PEOA. Goodfellow et al ⁵ reported
210	that age changes in the articular cartilage of the elbow joint are presented from necropsy
211	subjects. In other joints, prevalence of OA tended to increase with age. ^{4,26} BMI has been
212	proved to be an associated factor in OA of metacarpophalangeal, proximal
213	interphalangeal, and distal interphalangeal joints of the hand as well as weight bearing
214	joints, such as hip, knee, and ankle. ²⁷ A possible explanation is that adiponectin is
215	associated with OA. ²⁸ However, it is not clear whether adiponectin is also involved in
216	the relationship between BMI and PEOA.
217	In this study, smoking history was an inhibitory factor of PEOA. It is controversial
218	because there are conflicting reports that on one hand suggest smoking history is an
219	inhibitory factor ¹¹ but on the other hand suggest that it is not an inhibitory factor of
220	OA. ⁵ Nicotine may suppress cartilage degeneration, ²³ and the relationship between the
221	occurrence of OA and nicotine intake should be studied in future investigations.
222	Activities such as overhead sports, the use of vibrating tools, engagement in agricultural
223	labor, and engagement in heavy manual work were small contribution compared to age.

224	There are several limitations to this research. First, the sample size was small at 318
225	subjects. Secondly, approximately 1/3 of the selected subjects were enrolled in the
226	study. We did not know the reasons for nonparticipation of subjects in this study, which
227	may have potentially contributed to selection bias. Thirdly, the study is limited to those
228	over 50 years old. Fourthly, the history of trauma, arthritis, cerebrovascular disorders,
229	smoking history, engagement in heavy manual work, use of vibrating tools, engagement
230	in agricultural labor, and participation in overhead sports are based on the results of
231	patient questionnaires; therefore, these evaluations may have involved subjectivity and
232	imprecision to some extent. Fifthly, in determining PEOA, the osteophytes of the
233	olecranon or olecranon fossa may have been overlooked on the lateral view radiographs.
234	Finally, we did not ask participants about symptoms and location of pain. The methods
235	of examination are not uniform in regard to determining the tenderness or motion pain
236	at the elbow joint.

237 CONCLUSION

238	The prevalence of PEO.	A in Japanese subjects wa	s 25.2% for those aged 50-89, most
-----	------------------------	---------------------------	------------------------------------

- 239 of which were asymptomatic OA without motion pain or tenderness at the elbow. Age
- 240 and BMI increased the prevalence of PEOA, while a longer smoking history decreased
- the prevalence of PEOA. The prevalence of PEOA increased with age, but the disease
- 242 was self-accommodated by most people.

244 References

245	1.	Anderson JJ, Felson DT. Factors associated with osteoarthritis of the knee in the
246		first national health and nutrition examination survey (HANES I). Evidence for an
247		association with overweight, race, and physical demands of work. Am J Epidemiol
248		1988;128:179-89.
249	2.	Crubezy E, Goulet J, Bruzek J, Jelinek J, Rouge D, Ludes B. Epidemiology of
250		osteoarthritis and enthesopathies in a European population dating back 7700 years.
251		Joint Bone Spine 2002;69:580-8. doi:10.1016/S1297-319X(02)00455-4
252	3.	Debono L, Mafart B, Jeusel E, Guipert G. Is the incidence of elbow osteoarthritis
253		underestimated? Insights from paleopathology. Joint Bone Spine 2004;71:397-400.
254		doi:10.1016/j.jbspin.2003.11.005
255	4.	Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF. The
256		prevalence of knee osteoarthritis in the elderly. The Framingham osteoarthritis
257		study. Arthritis Rheum 1987;30:914-8.
258	5.	Goodfellow JW, Bullough PG. The pattern of ageing of the articular cartilage of the
259		elbow joint. J Bone Joint Surg Br 1967;49:175-81.

260	6.	Hashimoto S, Ikegami S, Nishimura H, Uchiyama S, Takahashi J, Kato H.
261		Prevalence and risk factors of carpal tunnel syndrome in Japanese aged 50 to 89
262		years. J Hand Surg Asian Pac 2020;25:320-7. doi:10.1142/S2424835520500356
263	7.	Ikegami S, Takahashi J, Uehara M, Tokida R, Nishimura H, Sakai A, et al. Physical
264		performance reflects cognitive function, fall risk, and quality of life in community-
265		dwelling older people. Sci Rep 2019;9:12242. doi:10.1038/s41598-019-48793-y
266	8.	Isobe F, Nishimura H, Ido Y, Ikegami S, Horiuchi H, Takahashi J, et al. Normative
267		values of QuickDASH in the elderly Japanese: a cohort survey randomly sampled
268		from a basic resident registry. J Hand Surg Asian Pac 2020;25:434-40.
269		doi:10.1142/S2424835520500472
270	9.	Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum
271		Dis 1957;16:494-502.
272	10.	Kobayashi T, Takagishi K, Shitara H, Ichinose T, Shimoyama D, Yamamoto A, et
273		al. Prevalence of and risk factors for shoulder osteoarthritis in Japanese middle-
274		aged and elderly populations. J Shoulder Elbow Surg 2014;23:613-9.
275		doi:10.1016/j.jse.2013.11.031

276	11.	Lee YH. Causal association between smoking behavior and the decreased risk of
277		osteoarthritis: a Mendelian randomization. Z Rheumatol 2019;78:461-6.
278		doi:10.1007/s00393-018-0505-7
279	12.	Lim YW, Van Rict RP, Mittal R, Bain GI. Pattern of osteophyte distribution in
280		primary osteoarthritis of the elbow. J Shoulder Elbow Surg 2008;17:963-6.
281		doi:10.1016/j.jse.2008.03.012
282	13.	Japanese Ministry of Internal Affairs and Communications, Statistics
283		Bureau. Population census. Accessed 2020 Jan 19.
284		https://www.stat.go.jp/english/data/kokusei/index.html
285	14.	Nagano Prefecture, Department of Statistics. Annual census report. Accessed 2020
286		Jan 19. https://tokei.pref.nagano.lg.jp/
287	15.	Nakamura S, Ninomiya S, Nakamura T. Primary osteoarthritis of the hip joint in
288		Japan. Clin Orthop Relat Res 1989;241:190-6.
289	16.	Oh JH, Chung SW, Oh CH, Kim SH, Park SJ, Kim KW, et al. The prevalence of
290		shoulder osteoarthritis in the elderly Korean population: association with risk

291		factors and function. J Shoulder Elbow Surg 2011;20:756-63.
292		doi:10.1016/j.jse.2011.01.021
293	17.	Oya N, Tajika T, Ichinose T, Sasaki T, Yamamoto A, Kuboi T, et al. The
294		prevalence of elbow osteoarthritis in Japanese middle-aged and elderly populations:
295		the relationship between risk factors and function. J Shoulder Elbow Surg
296		2018;27:1086-1091. doi:10.1016/j.jse.2018.02.049
297	18.	Soojian MG, Kwon YW. Elbow arthritis. Bulletin of the NYU Hospital for Joint
298		Diseases 2007;65:61-71.
299	19.	Stanley D. Prevalence and etiology of symptomatic elbow osteoarthritis. J Shoulder
300		Elbow Surg 1994;3:386-9.
301	20.	Tokida R, Uehara M, Ikegami S, Takahashi J, Nishimura H, Sakai N, et al.
302		Association between sagittal spinal alignment and physical function in the Japanese
303		general elderly population: a Japanese cohort survey randomly sampled from a
304		basic resident registry. J Bone Joint Surg Am 2019;101:1698-706.
305		doi:10.2106/JBJS.18.01384

306	21.	Uehara M, Takahashi J, Ikegami S, Tokida R, Nishimura H, Kuraishi S, et al.
307		Impact of diffuse Idiopathic skeletal hyperostosis on sagittal spinal alignment in the
308		general elderly population: a Japanese cohort survey randomly sampled from a
309		basic resident registry. JBJS Open Access 2019;4:e0062.1-6.
310		doi:10.2106/JBJS.OA.18.00062
311	22.	Uehara M, Takahashi J, Ikegami S, Tokida R, Nishimura H, Sakai N, et al. Sagittal
312		spinal alignment deviation in the general elderly population: a Japanese cohort
313		survey randomly sampled from a basic resident registry. Spine J 2019;19:349-56.
314		doi:10.1016/j.spinee.2018.06.346
315	23.	Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev
316		Drug Discov 2005;4:673-84. doi:10.1038/nrd1797
317	24.	van der Esch M, Knoop J, van der Leeden M, Roorda LD, lems WF, Knol DL,
318		Dekker J. Clinical phenotypes in patients with knee osteoarthritis: a study in the
319		Amsterdam osteoarthritis cohort. Osteoarthritis Cartilage 2015;23:544-9.
320		doi:10.1016/j.joca.2015.01.006

321	25.	Yoshimura N, Muraki S, Nakamura K, Tanaka S. Epidemiology of the locomotive
322		syndrome: the research on osteoarthritis/osteoporosis against disability study 2005-
323		2015. Mod Rheumatol 2017;27:1-7. doi:10.1080/14397595.2016.1226471
324	26.	Yoshimura N, Muraki S, Oka H, Kawaguchi H, Nakamura K, Akune T. Cohort
325		profile: research on osteoarthritis/osteoporosis against disability study. Int J
326		Epidemiol 2010;39:988-95. doi:10.1093/ije/dyp276
327	27.	Yusuf E, Nelissen RG, Ioan-Facsinay A, Stojanovic-Susulic V, DeGroot J, van
328		Osch G, et al. Association between weight or body mass index and hand
329		osteoarthritis: a systematic review. Ann Rheum Dis 2010;69:761-5.
330		doi:10.1136/ard.2008.106930
331	28.	Yusuf E, Ioan-Facsinay A, Bijsterbosch J, Klein-Wieringa I, Kwekkeboom J,
332		Slagboom PE, et al. Association between leptin, adiponectin and resistin and long-
333		term progression of hand osteoarthritis. Ann Rheum Dis 2011;70:1282-4.
334		doi:10.1136/ard.2010.146282
335	29.	Zhang JF, Song LH, Wei JN, Zhang AL, Dong HY, Wen HY, et al. Prevalence of
336		and risk factors for the occurrence of symptomatic osteoarthritis in rural regions of

Shanxi Province, China. Int J Rheum Dis 2016;19:781-9. doi:10.1111/1756-

185X.12470

340 Figure legends

- 341 Figure 1. Survey questions regarding activity.
- 342 Engagement in heavy manual work, use of vibrating tool, engagement in agricultural
- 343 labor, and participation in overhead sports were classified by answers of 5 years more
- 344 history of these questionnaire. If subjects had been engaged in carrying objects 10 kg or
- 345 more at least ten times a week for more than 5 years, they were defined as heavy
- 346 manual workers.

347

348 Figure 2. Survey questions regarding fractures and joint disorders.

- 350 Figure 3. A flowchart of the subjects enrolled in the study
- 351 One subject had both a history of an upper-extremity fracture and a disease-causing
- 352 arthritis. Diseases causing arthritis were hyperuricemia (n=17), rheumatoid arthritis

of the syndron
--

354 syndrome (n=1).

355

356 Figure 4. Radiographs of the elbow assessed as KL grade 2 PEOA.

- 357 Definite osteophytes are noted at the medial ulnohumeral joint in anteroposterior view
- and at the coronoid fossa and coronoid process in lateral view

- 360 Figure 5. Distribution of subjects with PEOA, stratified by gender and age
- 361 PEOA, primary elbow osteoarthritis.