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Summary
Acute myocardial infarction (AMI) is a major cause of morbidity and mortality worldwide. Primary percu-

taneous coronary intervention (PPCI) is the gold standard treatment for patients presenting with ST-segment
elevation myocardial infarction (STEMI). PPCI reperfusion therapy has the potential to reduce infarct size,
preserve the left ventricle ejection fraction (LVEF), prevent lethal complications, and improve prognosis. A
significant proportion of STEMI patients, however, develop post-infarct heart failure despite optimal PPCI.
One of the reasons for post-infarct heart failure is that reperfusion injury increases the infarct area after
PPCI. This article reviews the current understanding and up-to-date evidence basis for therapeutic interven-
tion of reperfusion injury. Specifically, the combination of myocardial ischemia secondary to acute coronary
occlusion and reperfusion injury leads to further myocardial injury and cell death. Multiple treatment modali-
ties have been shown to be cardioprotective and reduce reperfusion injury in experimental animal models.
Recent clinical trials have assessed multiple cardioprotective strategies, including ischemic pre- and post-
conditioning, pharmacologic therapies, and mechanical devices. While several therapies have been shown to
reduce infarct size in animal models or proof-of-concept studies, many large-scale trial results have proven in-
consistent and disappointing. To decrease the incidence of severe heart failure in patients and extend healthy
life expectancy in an aging society, further development of prevention strategies for reperfusion injury is
needed, including novel maneuvers, drugs, devices, and combinations of the three.
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Background

The number of the patients with ST-segment eleva-
tion myocardial infarction (STEMI) has decreased over
recent decades, mostly in developed countries as a re-
sult of the proactive management of coronary risk fac-

tors, including lifestyle modification and medications. In
developing countries, however, the incidence of acute
myocardial infarction (STEMI and non-STEMI) has in-
creased1). The decreased STEMI mortality rate in de-
veloped countries, from 20% in the late 1980s to 5%-7%
currently2-4), has largely been attributed to primary per-
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cutaneous coronary intervention (PPCI).
The door-to-balloon time in patients with STEMI un-

dergoing PPCI has consistently declined; however, the
overall in-hospital mortality has not decreased5), likely
because the patient population has changed, such as
aging and/or severe co-morbid diseases6). A recent
patient-level meta-analysis demonstrated that the in-
farct size within 1 month after PPCI possibly predicts
the rate of all-cause mortality and hospitalization for
heart failure at 1 year7). Although optimal reperfusion
by PPCI is the most effective strategy of limiting in-
farct size and subsequent ventricular remodeling8),
reperfusion injury associated with an irreversible in-
jury to the myocardium and coronary circulation could
increase infarct size after PPCI9,10).

The prevention and treatment of reperfusion injury
after PPCI is one of the most important remaining is-
sues by which overall outcomes of patients with
STEMI can be improved by reducing infarct size11-16).

Pathophysiology of Myocardial Reperfusion
Injury

1. History of reperfusion and reperfusion injury
STEMI infarct size is determined by the following

three factors: size of the ischemic area at risk; duration
of coronary occlusion and magnitude of residual collat-
eral blood flow; and extent of coronary microvascular
dysfunction.

The infarct develops in a typical wavefront manner,
starting in the subendocardial layers in the center of
the area at risk and progressing into the subepicardial
layers and the border zones of area at risk with the
ongoing duration of coronary occlusion17-19). Four to six
hours from the onset of STEMI, 30%-50% of the area
at risk remains viable, and therefore PPCI is very ef-
fective in salvaging the myocardium. Even after 12 h
of coronary occlusion, viable myocardium is present
and PPCI can reduce the infarct size20).

In 1972 Ross et al.21,22) reported that reperfusion after
3 h of coronary occlusion reduces infarct size in dogs;
this observation marked the beginning of reperfusion
strategies23). The GISSI24) and ISIS-2 trials25) used intra-
venous thrombolysis to demonstrate improved out-
comes in STEMI patients; several other trials used in-
tracoronary thrombolysis to confirm the feasibility of
thrombolytic reperfusion26,27). PPCI, which is currently

the first-line strategy for treating STEMI, has since
gained wide acceptance in developing countries28,29).

Although reperfusion is mandatory to salvage
ischemic myocardium from incipient infarction and
reperfusion strategies have improved STEMI patient
outcomes, reperfusion per se inflicts additional injury on
the heart, which manifests as increased infarct size
and microvascular dysfunction. As a result of the
reperfusion injury debate, the postconditioning phe-
nomenon was reported to attenuate such injuries30,31).
Staccato reperfusion as in ischemic postconditioning
was shown to reduce infarct size in rabbit hearts.

2. Mechanism of reperfusion injury
Cardiomyocyte compartment

The mechanisms which contribute to myocardial
reperfusion injury to the cardiomyocyte and coronary
vascular compartment are shown in Fig. 1. Morpho-
logically, the infarcted myocardium is characterized by
myofibrillar contraction bands, swollen and/or rup-
tured mitochondria, sarcolemmal rupture, microvascu-
lar destruction, hemorrhage, and infiltrating leuko-
cytes. Reperfusion likely leads to necrosis, which is re-
flected by the aforementioned histologic findings17-19).
The contributors to necrotic cell death16) include cellu-
lar calcium overload through reverse mode Na+/Ca2+

exchange after sodium overload through the Na+/H+

exchanger32,33), oscillatory release and re-uptake of Ca2+

into the sarcoplasmic reticulum with resulting uncoor-
dinated and excessive myofibrillar contractions34), diges-
tion of the cytoskeleton and sarcolemma by calpains35),
and excess formation of reactive oxygen species
(ROS)36).

Necrosis may be an unregulated mode of cell death,
and more regulated modes of cell death also occur in
infarcted myocardium; however, the quantitative con-
tribution to final infarct size has not been estab-
lished37,38). Apoptosis is an energy-dependent mode of
cell death with typical DNA fragmentation, but lacks
an inflammatory response and is initiated extrinsically
through sarcolemmal receptors and intrinsically by re-
lease of cytochrome C from damaged mitochondria39,40).
Necrotic and apoptotic cardiomyocyte death is mainly
attributed to opening of the mitochondrial permeability
transition pore (MPTP)41-44). Autophagy is the process of
lysosomal protein degradation, particularly of mito-
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Figure　1　Mechanisms in the cardiomyocyte and coronary vascular compartment which interact and contribute to irrevers-
ible reperfusion injury.
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chondrial proteins (mitophagy), and serves for recy-
cling of proteins, but the role in human myocardial
ischemia/reperfusion and cardioprotection has not
been elucidated45,46). The quantitative contribution of dif-
ferent modes of cell death to infarction or cardioprotec-
tion is not clear; however, mitochondria plays an essen-
tial role in all of the modes of cell death. Indeed, the
regulated modes of cell death may be specific targets
for pharmacologic cardioprotection.
Coronary vascular compartment

Reperfusion injury in the coronary circulation leads
to microvascular dysfunction via increased capillary
permeability and edema47,48), coronary microemboliza-
tion of atherosclerotic particular debris, platelets, leu-
kocytes, and erythrocyte aggregates49-52), impaired vaso-
motion due to endothelial and vascular smooth muscle
damage53-55), and capillary destruction and hemor-
rhage56,57).

Impaired myocardial blood flow, despite restoration
of epicardial coronary patency, was first reported by
Krug et al.58) and Kloner et al.59) as the no-reflow phe-
nomenon, which is the most severe form of coronary
microvascular reperfusion injury. No-reflow is ob-
served in <35% of patients after STEMI60).

It is possible that the delay to reperfusion increases
the incidence of the no-reflow phenomenon61) and no-
reflow and/or intramyocardial hemorrhage are power-
ful predictors of a poor prognosis62-64).

Reactive oxygen species (ROS) formation may be an
important factor underlying the pathophysiologic
mechanism in myocardial and coronary microvascular
reperfusion injury65). Better coronary microvascular
function, as reflected by better angiographic coronary
artery flow, is associated with better left ventricular
function and less remodeling after PPCI66).

Strategy to Reduce Reperfusion Injury after
PPCI

1. Preconditioning
A number of studies have demonstrated that pre-

infarction angina is associated with reduced infarct
size67-70), reduced coronary microvascular injury71,72), and
better clinical outcomes67,69,73). A remote preconditioning
maneuver (intermittent arm ischemia vis-a-vis 4 cycles
of 5-min inflation and 5-min deflation of a blood pres-
sure cuff) can simulate pre-infarction angina. Bøtker et
al.74) demonstrated that implementing the remote pre-
conditioning maneuver in the ambulance before PPCI
is an effective strategy to reduce reperfusion injury in
patients with STEMI. More than 300 consecutive adult
patients with a suspected first acute myocardial infarc-
tion were randomly assigned in a 1:1 ratio to receive
PPCI with or without remote preconditioning. The re-
mote preconditioning patient group received remote
preconditioning during transport to the hospital and
PPCI in the hospital. The infarct area in the patients
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who received remote preconditioning was significantly
reduced compared to the group of patients who did
not receive remote preconditioning74).

2. Pharmacologic strategies
Glucose-insulin-potassium administered in the ambu-

lance has been shown to reduce infarct size in a small
subgroup of patients in the IMMEDIATE trial75). More-
over, the in-hospital mortality/cardiac arrest rate was
reduced75). Another glucose-lowering agent (glucagon-
like peptide-1 [GLP-1] receptor agonist) has also been
shown in a rat model76) and small clinical trials to sig-
nificantly reduce myocardial infarct size and increase
the myocardial salvage index77). The mechanisms un-
derlying the glucose-insulin-potassium and GLP-1 re-
ceptor agonist effects are unclear and the efficacy in
an actual clinical setting has not been established be-
cause a multicenter randomized trial has not been con-
ducted.

Two recent clinical studies using nitric oxide have
failed to demonstrate a significant reduction in myocar-
dial infarction size with intravenous or intracoronary
routes in STEMI patients treated with PPCI78,79); how-
ever, major adverse cardiovascular events (MACE) at
1 year and the infarct size in patients with STEMI
was reduced.

Intravenous metoprolol administered before reperfu-
sion reduces infarct size and microcirculation in rab-
bits80), and humans81,82). The mechanism underlying this
effect is thought to depend on a reduction in ischemic
injury by reducing energy demands81); however, it has
been reported that metoprolol acts via β1 adrenergic
receptors on neutrophils to decrease neutrophil-platelet
co-aggregate formation during reperfusion81), which
could protect the microcirculation. The dual-target
benefits of metoprolol appear to be specific to this
drug and not a class effect.

Adenosine infusion during reperfusion therapy im-
proved patient survival and reduced the composite
clinical endpoint of congestive heart failure or death at
6 months in a clinical trial involving STEMI patients83).
Another randomized controlled clinical trial showed
that the infarct area was reduced after a 70 μg/kg/
min adenosine infusion84).

Cyclosporin A, an inhibitor of MPTP, has been re-
ported to have cardioprotective effects in several small

clinical trials by reducing the creatinine kinase (CK)
area under the curve (AUC) by 40% and infarct size
between 20% and 28%85,86). The Cyclosporine and Prog-
nosis in AMI Patients trial (CIRCUS), the largest multi-
center, double-blind, randomized trial involving 970 pa-
tients with anterior STEMI to date did not result in
better clinical outcomes than patients treated with pla-
cebo and did not prevent adverse left ventricular re-
modeling at 1 year87).

MTP-131 is a peptide that may protect mitochondria
by inhibiting cardiolipin and reducing production of
ROS. In an experiment using rats, this drug reduced
infarct size88,89). In the phase II EMBRACE STEMI trial,
no significant reduction in infarct size occurred in 117
patients, even though the highly-selected population of
patients had an anterior STEMI, TIMI 0, and similar
reperfusion time90).

Sodium thiosulfate (STS) is a metabolite of hydrogen
sulfide (H2S) and an endogenous gas transmitter that
has been shown to mediate numerous physiologic ac-
tivities in organs, such as the heart, brain, and kidneys,
by its anti-oxidant effects in murine models, thus pre-
serving mitochondrial activity and chelating cal-
cium91-93). In vitro and murine studies have shown that
STS protects against neuronal ischemia and IRI in iso-
lated rat heart, thus significantly reducing infarct
size94,95). These protective effects were shown to be as-
sociated with inhibition/reduced expression of caspase-
3, a vital protein involved in cell apoptosis. Further-
more, in 2018 Ravindran et al.96) showed that isolated
rat hearts post-conditioned with STS had significantly
reduced infarct size associated with RI by modulating
cardiac mitochondria responsible for both contractile
and metabolic function. Intravenous STS is currently
being evaluated in a phase 2 trial (Sodium Thiosulfate
to Preserve Cardiac Function in STEMI [GIPS-IV]).

Atrial natriuretic peptide and nicorandil are ex-
pected for the effect of nitric oxide (NO)-independent
vasodilation and myocardial protection in patients with
STEMI. Several studies have demonstrated that these
agents improve the outcomes of STEMI patients un-
dergoing PPCI97-105); however, a class II-B recommenda-
tion is given to these agents by the Japanese Circula-
tion Society due to a lack of large randomized trials.
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Figure　2　The individual components that make up final myocardial infarct size.
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Table　1　Strategy to prevent reperfusion injury

Preconditioning Remote preconditioning maneuver

Pharmacologic strategies Glucose-insulin-potassium
Nitric oxide
Metoprolol
Adenosine
Cyclosporin A
MTP-131
Sodium thiosulphate
Atrial natriuretic peptide
Nicorandil

Mechanical/maneuver strategies Intra-aortic balloon counterpulsation
Impella device
Hypothermia
Gradual reperfusion
Lactate-enriched blood (PCLeB) injection

3. Mechanical/maneuver strategies
Intra-aortic balloon counter pulsation does not re-

duce infarct size in patients with an anterior STEMI106).
In two small studies involving hypothermia using an
endovascular cooling strategy, infarct size was reduced
in the patients with acute myocardial infarction under-
going PPCI107,108). In the larger CHILL-MI trial involving
120 STEMI patients, the infarct size based on MRI,
and creatine kinase-muscle brain and troponin levels
were not reduced109).

Use of an Impella device facilitates left ventricular
unloading. Recent studies have demonstrated that left

ventricular unloading by an Impella device reduces in-
farct size in porcine STEMI models110-112); a similar
study involving humans has not been conducted.

Lactate-enriched blood (PCLeB) injection into coro-
nary arteries during gradual reperfusion (staccato
reperfusion) at the time of PPCI augments the postcon-
ditioning effect and leads to better outcomes in STEMI
patients113). This method is simple, economical, and less
invasive compared to a mechanical device without ad-
ditional drugs. Further accumulation of clinical experi-
ences is warranted to elucidate the true value of this
approach.
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Future Recommendation

Prompt reperfusion in patients presenting with
STEMI and undergoing PPCI remains the gold stan-
dard treatment and improves outcomes; however, both
experimental animal models and studies in patients
with STEMI suggest that up to 50% of the final infarct
size is a result of lethal reperfusion injury10), thus mak-
ing reperfusion injury an attractive therapeutic target
(Fig. 2). For this purpose, the complex and multifacto-
rial pathophysiology underlying reperfusion injury
should be further elucidated. A comprehensive ap-
proach is warranted to elucidate the multiple path-
ways involved in reperfusion injury.

Many strategies have been tried in the past to pre-
vent reperfusion injury (Table 1), including precondi-
tioning, drugs, procedures, and mechanical support in
each ischemic phase. There is currently no strategy
recommended as class I according to any guidelines.
Remote ischemic conditioning is a simple, effective,
safe, and inexpensive intervention, and infarct size re-
duction has been evidenced by all trials in STEMI pa-
tients, whether undergoing primary PCI or thromboly-
sis for reperfusion. Therefore, establishment of a com-
bination strategy, including effective methods in all
ischemic phases, is needed in the future.
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